Time filter

Source Type

Brighton, United Kingdom

The University of Sussex is a public research university situated on a large and open green field site on the South Downs, East Sussex. It is located on the edge of the city of Brighton and Hove. Taking its name from the historic county of Sussex, the university received its Royal Charter in August 1961. Sussex was a founding member of the 1994 Group of research-intensive universities promoting excellence in research and teaching.Sussex counts three Nobel Prize winners, 14 Fellows of the Royal Society, six Fellows of the British Academy and a winner of the Crafoord Prize among its faculty. The university is currently ranked 14th in the UK and 111th in the world by the Times Higher Education World University Rankings 2014–15. In latest university rankings The Guardian university guide 2015 placed Sussex 43rd and the Times and Sunday Times Good University Guide 2015 ranks Sussex 25th. The 2014 Academic Ranking of World Universities placed the University within the top 18-20 in the United Kingdom and in the top 151-200 internationally.Sussex receives students from 120 countries and maintains links with research universities including Harvard University, Yale University, Georgetown University, University of California, Santa Cruz, University of Pennsylvania, Paris-Sorbonne University, and University of Toronto. Wikipedia.

The assessment of scientific publications is an integral part of the scientific process. Here we investigate three methods of assessing the merit of a scientific paper: subjective post-publication peer review, the number of citations gained by a paper, and the impact factor of the journal in which the article was published. We investigate these methods using two datasets in which subjective post-publication assessments of scientific publications have been made by experts. We find that there are moderate, but statistically significant, correlations between assessor scores, when two assessors have rated the same paper, and between assessor score and the number of citations a paper accrues. However, we show that assessor score depends strongly on the journal in which the paper is published, and that assessors tend to over-rate papers published in journals with high impact factors. If we control for this bias, we find that the correlation between assessor scores and between assessor score and the number of citations is weak, suggesting that scientists have little ability to judge either the intrinsic merit of a paper or its likely impact. We also show that the number of citations a paper receives is an extremely error-prone measure of scientific merit. Finally, we argue that the impact factor is likely to be a poor measure of merit, since it depends on subjective assessment. We conclude that the three measures of scientific merit considered here are poor; in particular subjective assessments are an error-prone, biased, and expensive method by which to assess merit. We argue that the impact factor may be the most satisfactory of the methods we have considered, since it is a form of pre-publication review. However, we emphasise that it is likely to be a very error-prone measure of merit that is qualitative, not quantitative. © 2013 Eyre-Walker, Stoletzki.

Sanchez-Roige S.,University of Sussex
Neuropsychopharmacology | Year: 2014

There are well-established links between impulsivity and alcohol use in humans and animal models; however, whether exaggerated impulsivity is a premorbid risk factor or a consequence of alcohol intake remains unclear. In a first approach, human young (18-25 years) social binge and non-binge drinkers were tested for motor impulsivity and attentional abilities in a human version of the Five-Choice Serial Reaction Time Task (Sx-5CSRTT), modeled on the rodent 5CSRTT. Participants completed four variants of the Sx-5CSRT, in addition to being screened for impulsive traits (BIS-11 questionnaire) and impulsive behavior (by means of the Delay Discounting Questionnaire, Two-Choice Impulsivity Paradigm (TCIP), Stop Signal Reaction Time, and Time Estimation Task). Using a second approach, we compared one of these impulsivity measures, 5CSRTT performance, in two inbred strains of mice known to differ in alcohol intake. Compared with non-bingers (NBD; n=22), binge drinkers (BD, n=22) showed robust impairments in attention and premature responding when evaluated under increased attentional load, in addition to presenting deficits in decision making using the TCIP. The best predictors for high binge drinking score were premature responding in the Sx-5CSRTT, trait impulsivity in the BIS-11, and decision making in the TCIP. Alcohol-naïve C57BL/6J (B6) mice (alcohol preferring) were more impulsive in the 5CSRTT than DBA2/J (D2) mice (alcohol averse); the degree of impulsivity correlated with subsequent alcohol consumption. Homologous measures in animal and human studies indicate increased premature responding in young social BD and in the ethanol-preferring B6 strain of mice.Neuropsychopharmacology advance online publication, 16 July 2014; doi:10.1038/npp.2014.151.

Eyre-Walker A.,University of Sussex
Proceedings of the National Academy of Sciences of the United States of America | Year: 2010

A model is investigated in which mutations that affect a complex trait (e.g., heart disease) also affect fitness because the trait is a component of fitness or because the mutations have pleiotropic effects on fitness. The model predicts that the genetic variance, and hence the heritability, in the trait is contributed by mutations at low frequency in the population, unless the mean strength of selection of mutations that affect the trait is very small or weakly selected mutations tend to contribute disproportionately to the trait compared with strongly selected mutations. Furthermore, it is shown that each rare mutation tends to contribute more to the variance than each common mutation. These results may explain why most genome-wide association studies have failed to find associations that explain much of the variance. It is also shown that most of the variance in fitness contributed by new nonsynonymous mutations is caused by mutations at very low frequency in the population. This implies that most low-frequency SNPs, which are observed in current resequencing studies of, for example, 100 chromosomes, probably have little impact on the variance in fitness or traits. Finally, it is shown that the variance contributed by a category of mutations (e.g., coding or regulatory) depends largely upon the mean strength of selection; this has implications for understanding which types of mutations are likely to be responsible for the variance in fitness and inherited disease.

Alonso C.R.,University of Sussex
Trends in Genetics | Year: 2012

Current understanding of the molecular mechanisms underlying mRNA degradation indicates that specific mRNA degradation rates are primarily encoded within the mRNA message itself in the form of cis-regulatory elements bearing particular primary sequences and/or secondary-structures. Such control elements are operated by RNA-binding proteins (RBPs) and/or miRNA-containing complexes. Based on the large number of RBPs and miRNAs encoded in metazoan genomes, their complex developmental expression and that specific RBP and miRNA interactions with mRNAs can lead to distinct degradation rates, I propose that developmental gene expression is shaped by a complex 'mRNA degradation code' with high information capacity. Localised cellular events involving the modification of RBP and/or miRNA target sequences in mRNAs by alternative polyadenylation added to the activation of specific RBP and miRNA activities via cell signalling are predicted to further expand the capacity of the mRNA degradation code by coupling it to dynamic events experienced by cells at specific spatiotemporal coordinates within the developing embryo. © 2011 Elsevier Ltd.

O'Driscoll M.,University of Sussex
Cold Spring Harbor Perspectives in Biology | Year: 2012

Within the last decade, multiple novel congenital human disorders have been described with genetic defects in known and/or novel components of several well-known DNA repair and damage response pathways. Examples include disorders of impaired nucleotide excision repair, DNA double-strand and single-strand break repair, as well as compromised DNA damage-induced signal transduction including phosphorylation and ubiquitination. These conditions further reinforce the importance of multiple genome stability pathways for health and development in humans. Furthermore, these conditions inform our knowledge of the biology of the mechanics of genome stability and in some cases provide potential routes to help exploit these pathways therapeutically. Here, I will review a selection of these exciting findings from the perspective of the disorders themselves, describing how they were identified, how genotype informs phenotype, and how these defects contribute to our growing understanding of genome stability pathways. © 2012 Cold Spring Harbor Laboratory Press; all rights reserved.

Discover hidden collaborations