Time filter

Source Type

Tampa, FL, United States

The University of South Florida, also known as USF, is a member institution of the State University System of Florida, one of the state's three flagship universities for public research, and is located in Tampa, Florida, USA. Founded in 1956, USF is the eighth largest university in the nation and the third largest in the state of Florida, with a total enrollment of 47,122 as of 2009. USF has an autonomous campus in St. Petersburg, and branch centers in Sarasota and Lakeland. Wikipedia.

Breitbart M.,University of South Florida
Annual Review of Marine Science | Year: 2012

Over the past two decades, marine virology has progressed from a curiosity to an intensely studied topic of critical importance to oceanography. At concentrations of approximately 10 million viruses per milliliter of surface seawater, viruses are the most abundant biological entities in the oceans. The majority of these viruses are phages (viruses that infect bacteria). Through lysing their bacterial hosts, marine phages control bacterial abundance, affect community composition, and impact global biogeochemical cycles. In addition, phages influence their hosts through selection for resistance, horizontal gene transfer, and manipulation of bacterial metabolism. Recent work has also demonstrated that marine phages are extremely diverse and can carry a variety of auxiliary metabolic genes encoding critical ecological functions. This review is structured as a scientific "truth or dare," revealing several well-established "truths" about marine viruses and presenting a few "dares" for the research community to undertake in future studies. Copyright © 2012 by Annual Reviews. All rights reserved. Source

Batzill M.,University of South Florida
Surface Science Reports | Year: 2012

Graphene, a single atomic layer of sp 2 hybridized carbon, exhibits a zero-band gap with linear band dispersion at the Fermi-level, forming a Dirac-cone at the K-points of its Brillouin zone. In this review, we focus on basic materials science issues of this intriguing material. The scope of this work is further narrowed by concentrating on graphene grown at transition metal surfaces, mostly under vacuum conditions, and neglecting other graphene synthesis approaches, namely growth on SiC or by graphene oxide reduction. Thus one large section of this review focuses on metal/graphene interfaces. We summarize recent surface science studies on the structure, interaction, and the growth of graphene on various metals. Metal supported graphene is a recurring theme throughout this review as it provides model-systems for studying adsorption and graphene modifications on well-defined, large area samples, and thus is ideal for employing surface science techniques. Other aspects of graphene are also reviewed. Approaches for creating and characterizing graphene nanostructures, in particular graphene nanoribbons, are discussed. Graphene nanoribbons play an important role for potential electronic applications because the lateral electron confinement in the ribbons opens a band-gap in graphene. Materials issues of nanoribbons, like formation of well-defined edges are introduced. Atomic-scale defect-structures in graphene are another topic. The known defect structures in graphene are categorized and atomic scale characterization of these defects by scanning tunneling microscopy (stocktickerSTM) and high resolution transmission electron microscopy (TEM) is illustrated. Important for applications of graphene is our ability of modifying its properties. Therefore, studies of substitutional doping of graphene with nitrogen or boron, hydrogenation or fluorination of graphene, and the adsorption of molecules with strong electron affinity are included in this review. This review is restricted to a summary of surface science studies on well-ordered systems. Other important graphene research areas such as transport measurements on pure and modified graphene are not included. The goal of this review is to give a concise overview of the materials science of graphene from the surface science perspective. © 2011 Elsevier B.V. All rights reserved. Source

University of South Florida | Date: 2015-06-15

Donor milk has become a standard of care for feeding preterm infants, particularly those with gestational ages of 34 weeks or less, whose mothers are not lactating or not producing sufficient milk quantities. However, prior to distribution, donor milk is required to undergo pasteurization, typically using the Holder method, which is believed to destroy immune proteins in the milk and denature many other proteins. Donor milk has been found to contain concentrations of chemokines, cytokines, and growth factors, evidencing the value of donor milk over formula. In light of the findings, donor milk is supplemented with chemokines, cytokines, and growth factors that are found to be lower in the donor milk as compared to mothers own milk.

University of South Florida | Date: 2015-04-17

A power morcellation system, apparatus, and methodology. Structurally, the device includes a sturdy, pliable (e.g., able to be inserted and retracted through a 10-15 mm morcellator port), distensible, waterproof/watertight retaining bag/pouch/carrier to be deployed into the pelvic cavity of the subject. The device further includes a plurality (e.g., three (3)) of port tube channels extending outwardly from the bag, wherein the interior of each channel is in communication with the interior of the bag. Each channel has an open end (opposite from the end that terminates in the bag) through which a laparoscopic/robotic camera and other instruments (e.g., camera, control instrument) may pass. A smaller tube channel also extends outwardly from the bag and can be suited as an insufflation port channel, among other uses. The bag also includes a large opening surrounded by an elastic drawstring for receiving the specimen to be removed within the bag.

A method of delivering a compound of interest to the lungs of a subject by the intravenous injection of Sertoli cells loaded with a plurality of chitosan nanoparticles coupled with the compound of interest is provided. Testis-derived rat Sertoli cells were pre-loaded with chitosan nanoparticles coupled with or without the drug curcumin, pre-labeled with a fluorescent cell marker and then injected intravenously into the control or asthmatic mouse model host. Intact pre-loaded, pre-labeled Sertoli cells were present in the lungs at 15 minutes post-injection, appeared entrapped in the pulmonary pre-capillary vascular bed around alveolar sacs but were not present one hour post-injection although Sertoli cell label and cellular debris was. Most of the injected nanoparticle load (70%) and curcumin load (80%) was present in the lungs 15 minutes post-injection, and remained at 70% and 80%, respectively, one hour post-injection.

Discover hidden collaborations