Time filter

Source Type

Garcia A.,University of San Pablo - CEU
Methods in molecular biology (Clifton, N.J.) | Year: 2011

Metabolic fingerprinting, the main tool in metabolomics, is a non-targeted methodology where all detectable peaks (or signals), including those from unknown analytes, are considered to establish sample classification. After pattern comparison, those signals changing in response to a specific situation under investigation are identified to gain biological insight. For this purpose, gas chromatographymass spectrometry (GC-MS) has a drawback in that only volatile compounds or compounds that can be made volatile after derivatization can be analysed, and derivatization often requires extensive sample treatment. However, once the analysis is focused on low molecular weight metabolites, GC-MS is highly efficient, sensitive, and reproducible. Moreover, it is quantitative, and its compound identification capabilities are superior to other separation techniques because GC-MS instruments obtain mass spectra with reproducible fragmentation patterns, which allow for the creation of public databases. This chapter describes well-established protocols for metabolic fingerprinting (i.e. the comprehensive analysis of small molecules) in plasma and urine using GC-MS. Guidelines will also be provided regarding subsequent data pre-treatment, pattern recognition, and marker identification.

Veronica A.,University of San Pablo - CEU | Friedman P.A.,University of Pittsburgh
Molecular Endocrinology | Year: 2013

G protein-coupled receptors (GPCRs) are the largest and most diverse superfamily of membrane proteins and mediate most cellular responses to hormones and neurotransmitters. Posttranslational modifications are considered the main regulators of all GPCRs. In addition to phosphorylation, glycosylation, and palmitoylation, increasing evidence as reviewed here reveals that ubiquitination also regulates the magnitude and temporospatial aspects of GPCR signaling. Posttranslational protein modification by ubiquitin is a key molecular mechanism governing proteins degradation. Ubiquitination mediates the covalent conjugation of ubiquitin, a highly conserved polypeptide of 76 amino acids, to protein substrates. This process is catalyzed by 3 enzymes acting in tandem: an E1, ubiquitin-activating enzyme; an E2, ubiquitin-carrying enzyme; and an E3, ubiquitin ligase. Ubiquitination is counteracted by deubiquitinating enzymes that deconjugate ubiquitin-modified proteins and rescue the substrate from proteasomal degradation. Although ubiquitination is known to target many GPCRs for lysosomal or proteasomal degradation, emerging findings define novel roles for the basal status of ubiquitination and for rapid deubiquitination and transubiquitination controlling cell surface expression and cellular responsiveness of some GPCRs. In this review, we highlight the classical and novel roles of ubiquitin in the regulation of GPCR function, signaling, and trafficking. © 2013 by The Endocrine Society.

Almendral J.,University of San Pablo - CEU
PACE - Pacing and Clinical Electrophysiology | Year: 2013

This paper is the second part of a review of the phenomena of resetting and entrainment of reentrant arrhythmias. It describes the practical and clinical uses of resetting and entrainment, including the results of a variety of studies for these purposes. Given the amount of information generated, it is out of the scope of this review to comment in detail about each of the published studies. We rather present the basis for each described clinical use and for each type of arrhythmia in which these phenomena have been used with illustrative examples. The review covers: resetting response patterns; resetting/entrainment and termination; resetting/entrainment, fusion, and reentry; analysis of the postpacing interval; concealed entrainment; resetting/entrainment as an aid in the differential diagnosis among different arrhythmic mechanisms; usefulness of these phenomena in arrhythmic mechanisms other than macrorreentry. Finally, we make some comments about the recent use of these phenomena and propose two new criteria for entrainment recognition. ©2013, The Author. Journal compilation ©2013 Wiley Periodicals, Inc.

Moxon K.A.,Drexel University | Foffani G.,University of San Pablo - CEU | Foffani G.,Neural Bioengineering Group
Neuron | Year: 2015

The field of invasive brain-machine interfaces (BMIs) is typically associated with neuroprosthetic applications aiming to recover loss of motor function. However, BMIs also represent a powerful tool to address fundamental questions in neuroscience. The observed subjects of BMI experiments can also be considered as indirect observers of their own neurophysiological activity, and the relationship between observed neurons and (artificial) behavior can be genuinely causal rather than indirectly correlative. These two characteristics defy the classical object-observer duality, making BMIs particularly appealing for investigating how information is encoded and decoded by neural circuits in real time, how this coding changes with physiological learning and plasticity, and how it is altered in pathological conditions. Within neuroengineering, BMI is like a tree that opens its branches into many traditional engineering fields, but also extends deep roots into basic neuroscience beyond neuroprosthetics. © 2015 Elsevier Inc.

Amphetamine treatment during adolescence causes long-term cognitive deficits in rats. Pleiotrophin (PTN) is a cytokine with important roles in the modulation of synaptic plasticity, whose levels of expression are significantly regulated by amphetamine administration. To test the possibility that the long-term consequences of periadolescent amphetamine treatment cross species and, furthermore, to test the hypothesis that PTN could be one of the factors involved in the adult cognitive deficits observed after periadolescent amphetamine administrations, we comparatively studied the long-term consequences of periadolescent amphetamine treatment (3 mg/kg intraperitoneal, daily during 10 days) in normal wild-type (PTN+/+) and in PTN genetically deficient (PTN-/-) mice. Within the first week after cessation of treatment, significant deficits in the passive avoidance and Y-maze tests were only observed in amphetamine-pretreated PTN-/- mice. However, 13 and 26 days after the last administration, we did not find significant differences in Y-maze between amphetamine- and saline-pretreated PTN-/- mice. In addition, we did not find any genotype- or treatment-related anxiogenic- or depressive-like behaviour in adult mice. Furthermore, we observed a significantly enhanced long-term potentiation (LTP) in CA1 hippocampal slices from saline-pretreated PTN-/- mice compared with saline-pretreated PTN+/+ mice. Interestingly, amphetamine pre-treatment during adolescence significantly enhanced LTP in adult PTN+/+ mice but did not cause any effect in PTN-/- mice, suggesting LTP mechanisms saturation in naïve PTN-/- mice. The data demonstrate that periadolescent amphetamine treatment causes transient cognitive deficits and long-term alterations of hippocampal LTP depending on the endogenous expression of PTN. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

Discover hidden collaborations