Nova Scotia, Canada

University of Sainte-Anne
Nova Scotia, Canada

Université Sainte-Anne is a Canadian francophone university in the community of Pointe-de-l'Église, Nova Scotia. It and the Université de Moncton in New Brunswick are the only French-language universities in the Maritime Provinces. Wikipedia.

Time filter
Source Type

Cole J.J.,Cary Institute of Ecosystem Studies | Carpenter S.R.,University of Wisconsin - Madison | Kitchell J.,University of Wisconsin - Madison | Pace M.L.,University of Virginia | And 2 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2011

Cross-ecosystem subsidies to food webs can alter metabolic balances in the receiving (subsidized) system and free the food web, or particular consumers, from the energetic constraints of local primary production. Although cross-ecosystem subsidies between terrestrial and aquatic systems have been well recognized for benthic organisms in streams, rivers, and the littoral zones of lakes, terrestrial subsidies to pelagic consumers are more difficult to demonstrate and remain controversial. Here, we adopt a unique approach by using stable isotopes of H, C, and N to estimate terrestrial support to zooplankton in two contrasting lakes. Zooplankton (Holopedium, Daphnia, and Leptodiaptomus) are comprised of ≈20-40% of organic material of terrestrial origin. These estimates are as high as, or higher than, prior measures obtained by experimentally manipulating the inorganic 13C content of these lakes to augment the small, natural contrast in 13C between terrestrial and algal photosynthesis. Our study gives credence to a growing literature, which we review here, suggesting that significant terrestrial support of pelagic crustaceans (zooplankton) is widespread.

Patocka N.,McGill University | Patocka N.,University of Sainte-Anne | Sharma N.,McGill University | Rashid M.,McGill University | Ribeiro P.,McGill University
PLoS Pathogens | Year: 2014

Serotonin is an important neuroactive substance in all the parasitic helminths. In Schistosoma mansoni, serotonin is strongly myoexcitatory; it potentiates contraction of the body wall muscles and stimulates motor activity. This is considered to be a critical mechanism of motor control in the parasite, but the mode of action of serotonin is poorly understood. Here we provide the first molecular evidence of a functional serotonin receptor (Sm5HTR) in S. mansoni. The schistosome receptor belongs to the G protein-coupled receptor (GPCR) superfamily and is distantly related to serotonergic type 7 (5HT7) receptors from other species. Functional expression studies in transfected HEK 293 cells showed that Sm5HTR is a specific serotonin receptor and it signals through an increase in intracellular cAMP, consistent with a 5HT7 signaling mechanism. Immunolocalization studies with a specific anti-Sm5HTR antibody revealed that the receptor is abundantly distributed in the worm's nervous system, including the cerebral ganglia and main nerve cords of the central nervous system and the peripheral innervation of the body wall muscles and tegument. RNA interference (RNAi) was performed both in schistosomulae and adult worms to test whether the receptor is required for parasite motility. The RNAi-suppressed adults and larvae were markedly hypoactive compared to the corresponding controls and they were also resistant to exogenous serotonin treatment. These results show that Sm5HTR is at least one of the receptors responsible for the motor effects of serotonin in S. mansoni. The fact that Sm5HTR is expressed in nerve tissue further suggests that serotonin stimulates movement via this receptor by modulating neuronal output to the musculature. Together, the evidence identifies Sm5HTR as an important neuronal protein and a key component of the motor control apparatus in S. mansoni. © 2014 Patocka et al.

MacDonald G.K.,University of Sainte-Anne | Bennett E.M.,University of Sainte-Anne | Bennett E.M.,McGill University | Potter P.A.,University of Hawaii at Manoa | Ramankutty N.,McGill University
Proceedings of the National Academy of Sciences of the United States of America | Year: 2011

Increased phosphorus (P) fertilizer use and livestock production has fundamentally altered the global P cycle. We calculated spatially explicit P balances for cropland soils at 0.5° resolution based on the principal agronomic P inputs and outputs associated with production of 123 crops globally for the year 2000. Although agronomic inputs of P fertilizer (14.2 Tg of P·y-1) and manure (9.6 Tg of P·y-1) collectively exceeded P removal by harvested crops (12.3 Tg of P·y -1) at the global scale, P deficits covered almost 30% of the global cropland area. There was massive variation in the magnitudes of these P imbalances across most regions, particularly Europe and South America. High P fertilizer application relative to crop P use resulted in a greater proportion of the intense P surpluses (>13 kg of P·ha-1·y -1) globally than manure P application. High P fertilizer application was also typically associated with areas of relatively low P-use efficiency. Although manure was an important driver of P surpluses in some locations with high livestock densities, P deficits were common in areas producing forage crops used as livestock feed. Resolving agronomic P imbalances may be possible with more efficient use of P fertilizers and more effective recycling of manure P. Such reforms are needed to increase global agricultural productivity while maintaining or improving freshwater quality.

Anadon J.D.,Queens College, City University of New York | Anadon J.D.,Arizona State University | Sala O.E.,Arizona State University | Turner II B.L.,Arizona State University | Bennett E.M.,University of Sainte-Anne
Proceedings of the National Academy of Sciences of the United States of America | Year: 2014

A large fraction of the world grasslands and savannas are undergoing a rapid shift from herbaceous to woody-plant dominance. This land-cover change is expected to lead to a loss in livestock production (LP), but the impacts of woody-plant encroachment on this crucial ecosystem service have not been assessed. We evaluate how tree cover (TC) has affected LP at large spatial scales in rangelands of contrasting social-economic characteristics in the United States and Argentina. Our models indicate that in areas of high productivity, a 1% increase in TC results in a reduction in LP ranging from 0.6 to 1.6 reproductive cows (Rc) per km2. Mean LP in the United States is 27 Rc per km2, so a 1% increase in TC results in a 2.5% decrease in mean LP. This effect is large considering that woody-plant cover has been described as increasing at 0.5% to 2% per y. On the contrary, in areas of low productivity, increased TC had a positive effect on LP. Our results also show that ecological factors account for a larger fraction of LP variability in Argentinean than in US rangelands. Differences in the relative importance of ecological versus nonecological drivers of LP in Argentina and the United States suggest that the valuation of ecosystem services between these two rangelands might be different. Current management strategies in Argentina are likely designed to maximize LP for various reasons we are unable to explore in this effort, whereas land managers in the United States may be optimizing multiple ecosystem services, including conservation or recreation, alongside LP.

Cognitive and Behavioral Therapy for Psychosis is really booming for thirty years. Many skills have demonstrated a good effectiveness to treat medication-resistant symptoms. This paper goals are to focus on the main skills currently used to treat positive or negative symptoms of psychosis, to present perspectives for the young patients, and to change minds about the future of these patients who can claim today recovery and rehabilitation. © 2012 Elsevier Masson SAS.

Humphries M.M.,University of Sainte-Anne | Mccann K.S.,University of Guelph
Journal of Animal Ecology | Year: 2014

Summary: Ecological theory that is grounded in metabolic currencies and constraints offers the potential to link ecological outcomes to biophysical processes across multiple scales of organization. The metabolic theory of ecology (MTE) has emphasized the potential for metabolism to serve as a unified theory of ecology, while focusing primarily on the size and temperature dependence of whole-organism metabolic rates. Generalizing metabolic ecology requires extending beyond prediction and application of standardized metabolic rates to theory focused on how energy moves through ecological systems. A bibliometric and network analysis of recent metabolic ecology literature reveals a research network characterized by major clusters focused on MTE, foraging theory, bioenergetics, trophic status, and generalized patterns and predictions. This generalized research network, which we refer to as metabolic ecology, can be considered to include the scaling, temperature and stoichiometric models forming the core of MTE, as well as bioenergetic equations, foraging theory, life-history allocation models, consumer-resource equations, food web theory and energy-based macroecology models that are frequently employed in ecological literature. We conclude with six points we believe to be important to the advancement and integration of metabolic ecology, including nomination of a second fundamental equation, complementary to the first fundamental equation offered by the MTE. © 2013 British Ecological Society.

Aliferis K.A.,University of Sainte-Anne | Faubert D.,Institute Of Recherches Cliniques Of Montreal | Jabaji S.,University of Sainte-Anne
PloS one | Year: 2014

Here we present a metabolic profiling strategy employing direct infusion Orbitrap mass spectrometry (MS) and gas chromatography-mass spectrometry (GC/MS) for the monitoring of soybean's (Glycine max L.) global metabolism regulation in response to Rhizoctonia solani infection in a time-course. Key elements in the approach are the construction of a comprehensive metabolite library for soybean, which accelerates the steps of metabolite identification and biological interpretation of results, and bioinformatics tools for the visualization and analysis of its metabolome. The study of metabolic networks revealed that infection results in the mobilization of carbohydrates, disturbance of the amino acid pool, and activation of isoflavonoid, α-linolenate, and phenylpropanoid biosynthetic pathways of the plant. Components of these pathways include phytoalexins, coumarins, flavonoids, signaling molecules, and hormones, many of which exhibit antioxidant properties and bioactivity helping the plant to counterattack the pathogen's invasion. Unraveling the biochemical mechanism operating during soybean-Rhizoctonia interaction, in addition to its significance towards the understanding of the plant's metabolism regulation under biotic stress, provides valuable insights with potential for applications in biotechnology, crop breeding, and agrochemical and food industries.

Kushalappa A.C.,University of Sainte-Anne | Gunnaiah R.,University of Sainte-Anne
Trends in Plant Science | Year: 2013

Plants continuously encounter various environmental stresses and use qualitative and quantitative measures to resist pathogen attack. Qualitative stress responses, based on monogenic inheritance, have been elucidated and successfully used in plant improvement. By contrast, quantitative stress responses remain largely unexplored in plant breeding, due to complex polygenic inheritance, although hundreds of quantitative trait loci for resistance have been identified. Recent advances in metabolomic and proteomic technologies now offer opportunities to overcome the hurdle of polygenic inheritance and identify candidate genes for use in plant breeding, thus improving the global food security. In this review, we describe a conceptual background to the plant-pathogen relationship and propose ten heuristic steps streamlining the application of metabolo-proteomics to improve plant resistance to biotic stress. © 2013 Elsevier Ltd.

Khalil B.,University of Sainte-Anne | Adamowski J.,University of Sainte-Anne
Hydrology and Earth System Sciences | Year: 2012

In many situations the extension of hydrological or water quality time series at short-gauged stations is required. Ordinary least squares regression (OLS) of any hydrological or water quality variable is a traditional and commonly used record extension technique. However, OLS tends to underestimate the variance in the extended records, which leads to underestimation of high percentiles and overestimation of low percentiles, given that the data are normally distributed. The development of the line of organic correlation (LOC) technique is aimed at correcting this bias. On the other hand, the Kendall-Theil robust line (KTRL) method has been proposed as an analogue of OLS with the advantage of being robust in the presence of outliers. Given that water quality data are characterised by the presence of outliers, positive skewness and non-normal distribution of data, a robust record extension technique is more appropriate. In this paper, four record-extension techniques are described, and their properties are explored. These techniques are OLS, LOC, KTRL and a new technique proposed in this paper, the robust line of organic correlation technique (RLOC). RLOC includes the advantage of the LOC in reducing the bias in estimating the variance, but at the same time it is also robust in the presence of outliers. A Monte Carlo study and empirical experiment were conducted to examine the four techniques for the accuracy and precision of the estimate of statistical moments and over the full range of percentiles. Results of the Monte Carlo study showed that the OLS and KTRL techniques have serious deficiencies as record-extension techniques, while the LOC and RLOC techniques are nearly similar. However, RLOC outperforms OLS, KTRL and LOC when using real water quality records. © Author(s) 2012.

Aliferis K.A.,University of Sainte-Anne | Jabaji S.,University of Sainte-Anne
PLoS ONE | Year: 2012

The complexity of plant-pathogen interactions makes their dissection a challenging task for metabolomics studies. Here we are reporting on an integrated metabolomics networking approach combining gas chromatography/mass spectrometry (GC/MS) with Fourier transform ion cyclotron resonance/mass spectrometry (FT-ICR/MS) and bioinformatics analyses for the study of interactions in the potato sprout-Rhizoctonia solani pathosystem and the fluctuations in the global metabolome of sprouts. The developed bioanalytical and bioinformatics protocols provided a snapshot of the sprout's global metabolic network and its perturbations as a result of pathogen invasion. Mevalonic acid and deoxy-xylulose pathways were substantially up-regulated leading to the biosynthesis of sesquiterpene alkaloids such as the phytoalexins phytuberin, rishitin, and solavetivone, and steroidal alkaloids having solasodine and solanidine as their common aglycons. Additionally, the perturbation of the sprout's metabolism was depicted in fluctuations of the content of their amino acids pool and that of carboxylic and fatty acids. Components of the systemic acquired resistance (SAR) and hypersensitive reaction (HR) such as azelaic and oxalic acids were detected in increased levels in infected sprouts and strategies of the pathogen to overcome plant defense were proposed. Our metabolic approach has not only greatly expanded the multitude of metabolites previously reported in potato in response to pathogen invasion, but also enabled the identification of bioactive plant-derived metabolites providing valuable information that could be exploited in biotechnology, biomarker-assisted plant breeding, and crop protection for the development of new crop protection agents. © 2012 Aliferis, Jabaji.

Loading University of Sainte-Anne collaborators
Loading University of Sainte-Anne collaborators