Rostock, Germany
Rostock, Germany

The University of Rostock is a public university located in Rostock, Mecklenburg-Vorpommern, Germany. Founded in 1419, it is the third-oldest university in Germany. It is the oldest and largest university in continental northern Europe and the Baltic Sea area, and 8th oldest in Central Europe. It was the 5th university established in the Holy Roman Empire. The university has been associated with five Nobel laureates. Famous alumni include Nobel laureates: Albrecht Kossel, Karl von Frisch, and Otto Stern; theoretical physicists: Pascual Jordan and Walter H. Schottky. It is a member of the European University Association. The language of instruction is usually German, but Englishfor postgraduate studies. Wikipedia.

Time filter

Source Type

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: EINFRA-9-2015 | Award Amount: 8.22M | Year: 2016

The overall objective of READ is to implement a Virtual Research Environment where archivists, humanities scholars, computer scientists and volunteers are collaborating with the ultimate goal of boosting research, innovation, development and usage of cutting edge technology for the automated recognition, transcription, indexing and enrichment of handwritten archival documents. This Virtual Research Environment will not be built from the ground up, but will benefit from research, tools, data and resources generated in multiple national and EU funded research and development projects and provide a basis for sustaining the network and the technology in the future. This ICT based e-infrastructure will address the Societal Challenge mentioned in Europe in a Changing World namely the transmission of European cultural heritage and the uses of the past as one of the core requirements of a reflective society. Based on research and innovation enabled by the READ Virtual Research Environment we will be able to explore and access hundreds of kilometres of archival documents via full-text search and therefore be able to open up one of the last hidden treasures of Europes rich cultural hertitage.

Agency: Cordis | Branch: H2020 | Program: IA | Phase: DS-01-2016 | Award Amount: 5.62M | Year: 2017

certMILS develops a security certification methodology for Cyber-physical systems (CPS). CPS are characterised by safety-critical nature, complexity, connectivity, and open technology. A common downside to CPS complexity and openness is a large attack surface and a high degree of dynamism that may lead to complex failures and irreparable physical damage. The legitimate fear of security or functional safety vulnerabilities in CPS results in arduous testing and certification processes. Once fielded, many CPS suffer from the motto: never change a running system. certMILS increases the economic efficiency and European competitiveness of CPS development, while demonstrating the effectiveness of safety & security certification of composable systems. The project employs a security-by-design concept originating from the avionics industry: Multiple Independent Levels of Security (MILS), which targets controlled information flow and resource usage amongst software applications. certMILS reduces certification complexity, promotes re-use, and enables secure updates to CPS throughout its life-cycle by providing certified separation of applications, i.e. if an application within a complex CPS fails or starts acting maliciously, other applications are unaffected. Security certification of complex systems to medium-high assurance levels is not solved today. The existing monolithic approaches cannot cope with the complexity of modern CPS. certMILS uses ISO/IEC 15408 and IEC 62443 to develop and applies a compositional security certification methodology to complex composable safety-critical systems operating in constantly evolving hostile environments. certMILS core results are standardised in a protection profile.certMILS develops three composable industrial CPS pilots (smart grid, railway, subway), certifies security of critical re-useable components, and ensures security certification for the pilots by certification labs in three EU countries with involvement of the authorities.

Nienaber C.A.,University of Rostock | Clough R.E.,King's College London
The Lancet | Year: 2015

A new appraisal of the management of acute aortic dissection is timely because of recent developments in diagnostic strategies (including biomarkers and imaging), endograft design, and surgical treatment, which have led to a better understanding of the epidemiology, risk factors, and molecular nature of aortic dissection. Although open surgery is the main treatment for proximal aortic repair, use of endovascular management is now established for complicated distal dissection and distal arch repair, and has recently been discussed as a pre-emptive measure to avoid late complications by inducing aortic remodelling. © 2015 Elsevier Ltd.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: INFRADEV-1-2014 | Award Amount: 3.24M | Year: 2015

It has been robustly demonstrated that variations in the circulation of the middle atmosphere influence weather and climate throughout the troposphere all the way to the Earths surface. A key part of the coupling between the troposphere and stratosphere occurs through the propagation and breaking of planetary-scale Rossby waves and gravity waves. Limited observation of the middle atmosphere and these waves in particular limits the ability to faithfully reproduce the dynamics of the middle atmosphere in numerical weather prediction and climate models. ARISE2 capitalizes upon the work of the EU-funded first ARISE project combining for the first time international networks with complementary technologies such as infrasound, lidar and airglow. This joint network provided advanced data products that started to be used as benchmarks for weather forecast models. The ARISE network also allows enhanced and detailed monitoring of other extreme events in the Earth system such as erupting volcanoes, magnetic storms, tornadoes and tropical thunderstorms. In order to improve the ability of the network to monitor atmospheric dynamics, ARISE2 proposes to extend i) the existing network coverage in Africa and the high latitudes, ii) the altitude range in the stratosphere and mesosphere, iii) the observation duration using routine observation modes, and to use complementary existing infrastructures and innovative instrumentations. Data will be collected over the long term to improve weather forecasting to monthly or seasonal timescales, to monitor atmospheric extreme events and climate change. Compared to the first ARISE project, ARISE2 focuses on the link between models and observations for future assimilation of data by operational weather forecasting models. Among the applications, ARISE2 proposes infrasound remote volcano monitoring to provide notifications to civil aviation. The data portal will provide high-quality data and advanced data products to a wide scientific community.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: FETOPEN-1-2014 | Award Amount: 3.22M | Year: 2015

Ultrafast light pulses offer the fascinating opportunity to study system dynamics at ultrashort time scales. Trains of ultrafast light pulses also feature a broad frequency comb structure that has been exploited e.g. in high precision metrology. These characteristics have made ultrafast optics with coherent control techniques a flourishing field in recent years. A rich toolbox has been developed to generate shorter pulses with engineered temporal and spectral properties. Likewise, exploiting quantum features of light has enabled remarkable progress for the experimental exploration of fundamental physics and has been central to establishing the fields of quantum communication and quantum metrology. This proposal aims to bring together these two vibrant fields with the goal of exploring new capabilities that arise from the interplay of the quantum properties of light at extreme timescales and over extremely broad spectra. Ultrafast quantum pulses feature an inherent non-classical pulse-mode or supermode structure, which is imprinted onto the states in the generation process and is closely related to the entanglement properties between different frequency constituents of the quantum pulses. Harnessing this structure will dramatically enhance quantum channel capacities per signal state, enable precision time-frequency measurements beyond classical boundaries and open new avenues to scalable quantum information processing. Each partner brings unique expertise from the areas of quantum information, ultrafast and quantum optics, which expands the combined knowledge of the consortium. The partners research profiles cover engineered integrated optics with pulsed light, quantum communication systems, coherent control of light matter interaction and continuous variable quantum states. Experience in classical ultrafast pulse-shaping as well as advanced theoretical analysis tools addressing high-dimensional entanglement and multimode photon statistics round out the consortium.

Gassmann A.,University of Rostock
Quarterly Journal of the Royal Meteorological Society | Year: 2013

This study describes a new global non-hydrostatic dynamical core (ICON-IAP: Icosahedral Nonhydrostatic model at the Institute for Atmospheric Physics) on a hexagonal C-grid which is designed to conserve mass and energy. Energy conservation is achieved by discretizing the antisymmetric Poisson bracket which mimics correct energy conversions between the different kinds of energy (kinetic, potential, internal). Because of the bracket structure this is even possible in a complicated numerical environment with (i) the occurrence of terrain-following coordinates with all the metric terms in it, (ii) the horizontal C-grid staggering on the Voronoi mesh and the complications induced by the need for an acceptable stationary geostrophic mode, and (iii) the necessity for avoiding Hollingsworth instability. The model is equipped with a Smagorinsky-type nonlinear horizontal diffusion. The associated dissipative heating is accounted for by the application of the discrete product rule for derivatives. The time integration scheme is explicit in the horizontal and implicit in the vertical. In order to ensure energy conservation, the Exner pressure has to be off-centred in the vertical velocity equation and extrapolated in the horizontal velocity equation. Test simulations are performed for small-scale and global-scale flows. A test simulation of linear non-hydrostatic flow over a rough mountain range shows the theoretically expected gravity wave propagation. The baroclinic wave test is extended to 40 days in order to check the Lorenz energy cycle. The model exhibits excellent energy conservation properties even in this strongly nonlinear and dissipative case. The Held-Suarez test confirms the reliability of the model over even longer time-scales. © 2012 Royal Meteorological Society.

Hagemann M.,University of Rostock
FEMS Microbiology Reviews | Year: 2011

High and changing salt concentrations represent major abiotic factors limiting the growth of microorganisms. During their long evolution, cyanobacteria have adapted to aquatic habitats with various salt concentrations. High salt concentrations in the medium challenge the cell with reduced water availability and high contents of inorganic ions. The basic mechanism of salt acclimation involves the active extrusion of toxic inorganic ions and the accumulation of compatible solutes, including sucrose, trehalose, glucosylglycerol, and glycine betaine. The kinetics of these physiological processes has been exceptionally well studied in the model Synechocystis 6803, leading to the definition of five subsequent phases in reaching a new salt acclimation steady state. Recent '-omics' technologies using the advanced model Synechocystis 6803 have revealed a comprehensive picture of the dynamic process of salt acclimation involving the differential expression of hundreds of genes. However, the mechanisms involved in sensing specific salt stress signals are not well resolved. In the future, analysis of cyanobacterial salt acclimation will be directed toward defining the functions of the many unknown proteins upregulated in salt-stressed cells, identifying specific salt-sensing mechanisms, using salt-resistant strains of cyanobacteria for the production of bioenergy, and applying cyanobacterial stress genes to improve the salt tolerance of sensitive organisms. © 2010 Federation of European Microbiological Societies.

Lutke-Eversloh T.,University of Rostock
Applied Microbiology and Biotechnology | Year: 2014

The renewed interests in clostridial acetone-butanol-ethanol (ABE) fermentation as a next-generation biofuel source led to significantly intensified research in the past few years. This mini-review focuses on the current status of metabolic engineering techniques available for the model organism of ABE fermentation, Clostridium acetobutylicum. A comprehensive survey of various application examples covers two general issues related to both basic and applied research questions: (i) how to improve biofuel production and (ii) what information can be deduced from respective genotype/phenotype manipulations. Recently developed strategies to engineer C. acetobutylicum are summarized including the current portfolio of altered gene expression methodologies, as well as systematic (rational) and explorative (combinatorial) metabolic engineering approaches. © 2014 Springer-Verlag.

Popok V.N.,University of Rostock
Materials Science and Engineering R: Reports | Year: 2011

Atomic and molecular clusters can be considered to be a distinct form of matter, a "bridge" between atoms on the one hand and solids on the other. Interest in clusters comes from various fields. They can be used as models for investigation of fundamental physical aspects of the transition from the atomic scale to bulk material as well as controllable and versatile tools for modification and processing of surfaces and shallow layers on the nanometer scale. One of the important parameters in the application of cluster beams is the impact (or kinetic) energy. Current paper presents a state-of-the-art review in the field of cluster-surface interaction. The main emphasis is put on cluster collisions leading either to surface modification or implantation of cluster constituents. Both experimental results and data of theoretical modeling are considered. In particular, fundamental physical aspects and possible practical applications of pinning regime (slight cluster embedding into the surface) are under the discussion. Mechanisms of crater and hillock formation on the individual cluster impacts as well as of surface erosion on macroscopic scale (smoothing or dry etching) under the high fluence cluster bombardment are analysed. Specific phenomena of cluster stopping in matter and formation of radiation damage under keV-to-MeV energy implantation are critically analysed and an approach towards finding a universal scaling law for the cluster implantation is suggested. A number of advantages peculiar to the cluster beam technique are discussed in terms of designing and engineering the physical and chemical properties of materials for practical applications. © 2011 Elsevier B.V.

Agency: Cordis | Branch: H2020 | Program: Shift2Rail-RIA | Phase: S2R-OC-CCA-02-2015 | Award Amount: 797.13K | Year: 2016

The aim of OPEUS is to develop a simulation methodology and accompanying modelling tool to evaluate, improve and optimise the energy consumption of rail systems with a particular focus on in-vehicle innovation. The OPEUS concept is based on the need to understand and measure the energy being used by each of the relevant components of the rail system and in particular the vehicle. This includes the energy losses in the traction chain, the use of technologies to reduce these and to optimise energy consumption (e.g. ESSs). Specifically, the OPEUS approach has three components at its core: i) the energy simulation model ii) the energy use requirements (e.g. duty cycles) and iii) the energy usage outlook and optimisation strategies recommendation. The concept builds on an extensive range of knowledge and outcomes generated by a number of key collaborative projects (e.g. CleanER-D, MERLIN, OSIRIS, RailEnergy, ROLL2RAIL) underpinning the research proposed, ALL of which have been led by OPEUS consortium members. Particularly the tool developed for the CleanER-D project will be used as starting point. Significant complementary work from the academic community will also be used to enhance the activities of the project. Specifically, these previous projects input will be used to: Expand and develop the simulation tool (CleanER-D, MERLIN); Complete the operational requirements by enhancing the urban duty cycles (OSiRIS); Provide a global vision of energy consumption in railways (CleanER-D, OSIRIS, RailEnergy). OPEUS ambition is to firmly contribute to the following key areas: Understand energy consumption of urban railways; Develop a tool to objectively compare technologies and strategies aimed at optimising the energy usage of railway systems; Unlock the potential contribution that novel technologies and associated strategies can make to optimising rail energy consumption; Share a global vision for how energy is used in railways.

Loading University of Rostock collaborators
Loading University of Rostock collaborators