Entity

Time filter

Source Type

Regensburg, Germany

The University of Regensburg is a public research university located in the medieval city of Regensburg, Bavaria, a city that is listed as a UNESCO World Heritage Site. The university was founded on July 18, 1962 by the Landtag of Bavaria as the fourth full-fledged university in Bavaria. Following groundbreaking in 1965, the university officially opened to students during the 1967–1968 winter semester, initially housing faculties in Law and Business science and Philosophy. During the summer semester of 1968 the faculty of Theology was created. Currently, the University of Regensburg houses twelve faculties. The university actively participates in the European Union's SOCRATES programme as well as several TEMPUS programmes. The university is traditionally considered rather conservative compared to other German universities. Its most famous academic, the previous Pope Benedict XVI, served as a professor there until 1977 and formally retains his chair in theology. Wikipedia.


Zoicas I.,University of Regensburg
Neuropsychopharmacology | Year: 2014

Central oxytocin (OXT) has anxiolytic and pro-social properties both in humans and rodents, and has been proposed as a therapeutic option for anxiety and social dysfunctions. Here, we utilized a mouse model of social fear conditioning (SFC) to study the effects of OXT on social fear, and to determine whether SFC causes alterations in central OXT receptor (OXTR) binding and local OXT release. Central infusion of OXT, but not arginine vasopressin, prior to social fear extinction training completely abolished social fear expression in an OXTR-mediated fashion without affecting general anxiety or locomotion. SFC caused increased OXTR binding in the dorso-lateral septum (DLS), central amygdala, dentate gyrus, and cornu ammunis 1, which normalized after social fear extinction, suggesting that these areas form part of a brain network involved in the development and neural support of social fear. Microdialysis revealed that the increase in OXT release observed in unconditioned mice within the DLS during social fear extinction training was attenuated in conditioned mice. Consequently, increasing the availability of local OXT by infusion of OXT into the DLS reversed social fear. Thus, alterations in the brain OXT system, including altered OXTR binding and OXT release within the DLS, play an important role in SFC and social fear extinction. Thus, we suggest that the OXT system is adversely affected in disorders associated with social fear, such as social anxiety disorder and reinstalling an appropriate balance of the OXT system may alleviate some of the symptoms.Neuropsychopharmacology advance online publication, 23 July 2014; doi:10.1038/npp.2014.156. Source


Spin dynamics in semiconductors have gained much interest in the past years due to the emerging field of semiconductor spintronics. This review is focussed on the observation and control of electron and hole spin dynamics in modulation-doped heterostructures based on the GaAs/AlGaAs material system. Modulation doping allows for the creation of two-dimensional electron and hole systems with high carrier mobility. By confining carriers to a two-dimensional sheet, the spin-orbit interaction is modified significantly. In addition to this, it can be further modified by changing the symmetry of the system, for example by externally applied or built-in electric fields along the growth direction. Our recent experimental results on spin dynamics in two dimensions are reviewed and discussed in connection with theoretical considerations. A brief overview of the current research challenges in this field is given. © 2010 Elsevier B.V. Source


Glazov M.M.,RAS Ioffe Physical - Technical Institute | Ganichev S.D.,University of Regensburg
Physics Reports | Year: 2014

The nonlinear optical and optoelectronic properties of graphene with the emphasis on the processes of harmonic generation, frequency mixing, photon drag and photogalvanic effects as well as generation of photocurrents due to coherent interference effects, are reviewed. The article presents the state-of-the-art of this subject, including both recent advances and well-established results. Various physical mechanisms controlling transport are described in depth including phenomenological description based on symmetry arguments, models visualizing physics of nonlinear responses, and microscopic theory of individual effects. © 2013 Elsevier B.V. Source


Boger C.A.,University of Regensburg
PLoS genetics | Year: 2011

Family studies suggest a genetic component to the etiology of chronic kidney disease (CKD) and end stage renal disease (ESRD). Previously, we identified 16 loci for eGFR in genome-wide association studies, but the associations of these single nucleotide polymorphisms (SNPs) for incident CKD or ESRD are unknown. We thus investigated the association of these loci with incident CKD in 26,308 individuals of European ancestry free of CKD at baseline drawn from eight population-based cohorts followed for a median of 7.2 years (including 2,122 incident CKD cases defined as eGFR <60ml/min/1.73m(2) at follow-up) and with ESRD in four case-control studies in subjects of European ancestry (3,775 cases, 4,577 controls). SNPs at 11 of the 16 loci (UMOD, PRKAG2, ANXA9, DAB2, SHROOM3, DACH1, STC1, SLC34A1, ALMS1/NAT8, UBE2Q2, and GCKR) were associated with incident CKD; p-values ranged from p = 4.1e-9 in UMOD to p = 0.03 in GCKR. After adjusting for baseline eGFR, six of these loci remained significantly associated with incident CKD (UMOD, PRKAG2, ANXA9, DAB2, DACH1, and STC1). SNPs in UMOD (OR = 0.92, p = 0.04) and GCKR (OR = 0.93, p = 0.03) were nominally associated with ESRD. In summary, the majority of eGFR-related loci are either associated or show a strong trend towards association with incident CKD, but have modest associations with ESRD in individuals of European descent. Additional work is required to characterize the association of genetic determinants of CKD and ESRD at different stages of disease progression. Source


Wolfbeis O.S.,University of Regensburg
Chemical Society Reviews | Year: 2015

This article gives an overview of the various kinds of nanoparticles (NPs) that are widely used for purposes of fluorescent imaging, mainly of cells and tissues. Following an introduction and a discussion of merits of fluorescent NPs compared to molecular fluorophores, labels and probes, the article assesses the kinds and specific features of nanomaterials often used in bioimaging. These include fluorescently doped silicas and sol-gels, hydrophilic polymers (hydrogels), hydrophobic organic polymers, semiconducting polymer dots, quantum dots, carbon dots, other carbonaceous nanomaterials, upconversion NPs, noble metal NPs (mainly gold and silver), various other nanomaterials, and dendrimers. Another section covers coatings and methods for surface modification of NPs. Specific examples on the use of nanoparticles in (a) plain fluorescence imaging of cells, (b) targeted imaging, (c) imaging of chemical species, and (d) imaging of temperature are given next. A final section covers aspects of multimodal imaging (such as fluorescence/nmr), imaging combined with drug and gene delivery, or imaging combined with therapy or diagnosis. The electronic supplementary information (ESI) gives specific examples for materials and methods used in imaging, sensing, multimodal imaging and theranostics such as imaging combined with drug delivery or photodynamic therapy. The article contains 273 references in the main part, and 157 references in the ESI. This journal is © The Royal Society of Chemistry 2015. Source

Discover hidden collaborations