Regensburg, Germany
Regensburg, Germany

The University of Regensburg is a public research university located in the medieval city of Regensburg, Bavaria, a city that is listed as a UNESCO World Heritage Site. The university was founded on July 18, 1962 by the Landtag of Bavaria as the fourth full-fledged university in Bavaria. Following groundbreaking in 1965, the university officially opened to students during the 1967–1968 winter semester, initially housing faculties in Law and Business science and Philosophy. During the summer semester of 1968 the faculty of Theology was created. Currently, the University of Regensburg houses twelve faculties. The university actively participates in the European Union's SOCRATES programme as well as several TEMPUS programmes. The university is traditionally considered rather conservative compared to other German universities. Its most famous academic, the previous Pope Benedict XVI, served as a professor there until 1977 and formally retains his chair in theology. Wikipedia.

Time filter

Source Type

Schliemann J.,University of Regensburg
Reviews of Modern Physics | Year: 2017

Device concepts in semiconductor spintronics make long spin lifetimes desirable, and the requirements put on spin control by proposals for quantum information processing are even more demanding. Unfortunately, due to spin-orbit coupling electron spins in semiconductors are generically subject to rather fast decoherence. In two-dimensional quantum wells made of zinc-blende semiconductors, however, the spin-orbit interaction can be engineered to produce persistent spin structures with extraordinarily long spin lifetimes even in the presence of disorder and imperfections. Experimental and theoretical developments on this subject for both n-doped and p-doped structures are reviewed and possible device applications are discussed. © 2017 American Physical Society.

Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 3.39M | Year: 2017

The PATHSENSE (Pathogen Sensing) ETN will bring together an interdisciplinary team of world-leading researchers from Europe to tackle a highly ambitious scientific project, focusing on the molecular mechanisms of sensory perception in bacterial pathogens. PATHSENSE will establish an innovative doctoral training programme that will deliver 13 PhD graduates and high-impact scientific outputs. The relationship between molecular structures and biological function is central to understanding any living system; however the research methodologies required to unravel these relationships are often complex and fast-changing. The team participating in this Network has the infrastructure and track-record to train ESRs in these state-of-the art methodologies, including structural biology, proteomics & protein biochemistry, molecular biology, bacterial genetics, food microbiology, mathematical modelling, cell biology, microscopy and comparative genomics. PATHSENSE will investigate the poorly understood structure-function relationships that exist within a large multi-protein complex called a stressosome, which acts as a sensory organelle in bacteria. The project will involve extensive inter-sectoral mobility of the ESRs across 7 EU countries to make full use of the complementary skills available at each of the hosting institutions. The inter-sectoral Network comprises 8 leading Universities, 1 public research institution, 4 companies (from spin-off to large multi-national) and 1 governmental agency. A major objective of this Network will be to exploit the fundamental research to develop novel antimicrobial treatments that have applications in the food and public health sectors. This project will deliver high-impact science, 13 highly-trained innovative researchers and will produce a long-lasting inter-sectoral network of collaborators who will continue to work together to exploit fundamental research for the socio-economic benefit of Europe.

Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

This project is the second in the series of EC-financed parts of the Graphene Flagship. The Graphene Flagship is a 10 year research and innovation endeavour with a total project cost of 1,000,000,000 euros, funded jointly by the European Commission and member states and associated countries. The first part of the Flagship was a 30-month Collaborative Project, Coordination and Support Action (CP-CSA) under the 7th framework program (2013-2016), while this and the following parts are implemented as Core Projects under the Horizon 2020 framework. The mission of the Graphene Flagship is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries. This will bring a new dimension to future technology a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the EU investment, both in terms of technological innovation and economic growth. To realise this vision, we have brought together a larger European consortium with about 150 partners in 23 countries. The partners represent academia, research institutes and industries, which work closely together in 15 technical work packages and five supporting work packages covering the entire value chain from materials to components and systems. As time progresses, the centre of gravity of the Flagship moves towards applications, which is reflected in the increasing importance of the higher - system - levels of the value chain. In this first core project the main focus is on components and initial system level tasks. The first core project is divided into 4 divisions, which in turn comprise 3 to 5 work packages on related topics. A fifth, external division acts as a link to the parts of the Flagship that are funded by the member states and associated countries, or by other funding sources. This creates a collaborative framework for the entire Flagship.

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: PHC-09-2015 | Award Amount: 28.14M | Year: 2016

Many HIV vaccine concepts and several efficacy trials have been conducted in the prophylactic and therapeutic fields with limited success. There is an urgent need to develop better vaccines and tools predictive of immunogenicity and of correlates of protection at early stage of vaccine development to mitigate the risks of failure. To address these complex and challenging scientific issues, the European HIV Vaccine Alliance (EHVA) program will develop a Multidisciplinary Vaccine Platform (MVP) in the fields of prophylactic and therapeutic HIV vaccines. The Specific Objectives of the MVP are to build up: 1.Discovery Platform with the goal of generating novel vaccine candidates inducing potent neutralizing and non-neutralizing antibody responses and T-cell responses, 2. Immune Profiling Platform with the goal of ranking novel and existing (benchmark) vaccine candidates on the basis of the immune profile, 3. Data Management/Integration/Down-Selection Platform, with the goal of providing statistical tools for the analysis and interpretation of complex data and algorithms for the efficient selection of vaccines, and 4. Clinical Trials Platform with the goal of accelerating the clinical development of novel vaccines and the early prediction of vaccine failure. EHVA project has developed a global and innovative strategy which includes: a) the multidisciplinary expertise involving immunologists, virologists, structural biology experts, statisticians and computational scientists and clinicians; b) the most innovative technologies to profile immune response and virus reservoir; c) the access to large cohort studies bringing together top European clinical scientists/centres in the fields of prophylactic and therapeutic vaccines, d) the access to a panel of experimental HIV vaccines under clinical development that will be used as benchmark, and e) the liaison to a number of African leading scientists/programs which will foster the testing of future EHVA vaccines through EDCTP

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: FETOPEN-01-2016-2017 | Award Amount: 3.79M | Year: 2017

Optoelectronic devices typically operate in the weak coupling regime between light and matter, for example in conventional lasers relying on population inversion to achieve optical gain. Recently there has been a surge of interest in quantum systems operating instead in the strong coupling regime, when the coupling strength of the light-matter interaction is so strong that new states cavity polaritons are created, that are partially light, partially material excitation. In semiconductors, exciton-polaritons have been the most widely studied type of strongly coupled system. Recently a new phenomenon has been realized exploiting intersubband transitions. The resulting excitations are called intersubband polaritons, and they have two remarkable properties: (i) a bosonic character that is maintained up to high carrier densities since they are not restricted by the Mott transition limit; (ii) large Rabi splittings. Although the scientific community has explored the basic science of intersubband polaritons, their potential for future and innovative optoelectronic devices has been entirely untapped. The MIR-BOSE project will realize this potential, and demonstrate disruptive optoelectronic devices operating in the strong coupling regime between light and matter. We will demonstrate the first bosonic lasers operating in the mid-IR and THz ranges of the electromagnetic spectrum. Laser action here does not rely on population inversion, so we will achieve temperature independent operation and high powers. We will demonstrate a new concept of inverse-Q-switching leading to the generation of high power pulses in the mid-IR, overcoming severe bottlenecks in current technology. Finally, we will demonstrate non-classical/quantum light sources and devices, generating squeezed states of light in the mid-IR/THz spectral range for quantum optics. These new sources will have a major impact on several technologies and applications, being advantageous compared to current solutions.

Wang X.-D.,University of Regensburg | Wolfbeis O.S.,University of Regensburg
Chemical Society Reviews | Year: 2014

We review the current state of optical methods for sensing oxygen. These have become powerful alternatives to electrochemical detection and in the process of replacing the Clark electrode in many fields. The article (with 694 references) is divided into main sections on direct spectroscopic sensing of oxygen, on absorptiometric and luminescent probes, on polymeric matrices and supports, on additives and related materials, on spectroscopic schemes for read-out and imaging, and on sensing formats (such as waveguide sensing, sensor arrays, multiple sensors and nanosensors). We finally discuss future trends and applications and summarize the properties of the most often used indicator probes and polymers. The ESI† (with 385 references) gives a selection of specific applications of such sensors in medicine, biology, marine and geosciences, intracellular sensing, aerodynamics, industry and biotechnology, among others. © 2014 the Partner Organisations.

Kurtz A.,University of Regensburg
Annual Review of Physiology | Year: 2011

In the adult organism, systemically circulating renin almost exclusively originates from the juxtaglomerular cells in the afferent arterioles of the kidneys. These cells share similarities with pericytes and myofibro-blasts. They store renin in a vesicular network and granules and release it in a regulated fashion. The release mode of renin is not understood; in particular, the involvement of SNARE proteins is unknown. Renin release is acutely increased via the cAMP signaling pathway, which is triggered mainly by catecholamines and other Gs-coupled agonists, and is inhibited by calcium-related pathways that are commonly activated by vasoconstrictors. Renin release from juxtaglomerular cells is directly modulated in an inverse fashion by the blood pressure inside the afferent arterioles and by the chloride content in the tubule fluid at the macula densa segment of the distal tubule. Renin release is stimulated by nitric oxide and by prostanoids released by neighboring endothelial and macula densa cells. Steady-state renin concentrations in the plasma are determined essentially by the number of renin-producing cells in the afferent arterioles, which changes in parallel with challenges to the renin-angiotensin-aldosterone system. © 2011 by Annual Reviews. All rights reserved.

Glazov M.M.,RAS Ioffe Physical - Technical Institute | Ganichev S.D.,University of Regensburg
Physics Reports | Year: 2014

The nonlinear optical and optoelectronic properties of graphene with the emphasis on the processes of harmonic generation, frequency mixing, photon drag and photogalvanic effects as well as generation of photocurrents due to coherent interference effects, are reviewed. The article presents the state-of-the-art of this subject, including both recent advances and well-established results. Various physical mechanisms controlling transport are described in depth including phenomenological description based on symmetry arguments, models visualizing physics of nonlinear responses, and microscopic theory of individual effects. © 2013 Elsevier B.V.

Schaferling M.,University of Regensburg
Angewandte Chemie - International Edition | Year: 2012

Fluorescence imaging techniques involving chemical sensors are essential tools in many fields of science and technology because they enable the visualization of parameters which exhibit no intrinsic color or fluorescence, for example, oxygen, pH value, CO 2, H 2O 2, Ca 2+, or temperature, to name just a few. This Review aims to highlight the state of the art of fluorescence sensing and imaging, starting from a comprehensive overview of the basic functional principles of fluorescent probes (or indicators) and the design of sensor materials. The focus is directed towards the progress made in the development of multiple sensors and methods for their signal read out. Imaging methods involving optical sensors are applied in quite diverse scientific areas, such as medical research, aerodynamics, and marine research. The art of sensorship: Fluorescence imaging methods in combination with optical chemical sensors enable the visualization of flows on surfaces (see picture), temperature gradients, and the two-dimensional distribution of certain chemical species (O 2, H +, metal ions, H 2O 2) at an interface. This Review highlights the design of sensor materials, including nanoprobes, and the development of multiple sensors and their signal readout. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Meister G.,University of Regensburg
Nature Reviews Genetics | Year: 2013

Small-RNA-guided gene regulation has emerged as one of the fundamental principles in cell function, and the major protein players in this process are members of the Argonaute protein family. Argonaute proteins are highly specialized binding modules that accommodate the small RNA component-such as microRNAs (miRNAs), short interfering RNAs (siRNAs) or PIWI-associated RNAs (piRNAs)-and coordinate downstream gene-silencing events by interacting with other protein factors. Recent work has made progress in our understanding of classical Argonaute-mediated gene-silencing principles, such as the effects on mRNA translation and decay, but has also implicated Argonaute proteins in several other cellular processes, such as transcriptional regulation and splicing. © 2013 Macmillan Publishers Limited. All rights reserved.

Loading University of Regensburg collaborators
Loading University of Regensburg collaborators