Entity

Time filter

Source Type

Rimouski, Canada

The Université du Québec à Rimouski is a public university located in Rimouski, Quebec, Canada. Founded in 1969 as a satellite campus of the Université du Québec, UQAR provides access to higher education for the people of Bas-Saint-Laurent and the Gaspé Peninsula. It is the furthest north of any university in Québec. UQAR's programs include multidisciplinary research in marine science, regional development, and nordicity. Approximately 6,500 students attend the university. While most UQAR students are from eastern Québec, students also enroll from the countries of the Francophonie. Over 40,000 students have graduated since it opened in 1969. Wikipedia.


Cloutier R.,University of Quebec at Rimouski | Cloutier R.,CNRS Geosciences Laboratory of Rennes
Seminars in Cell and Developmental Biology | Year: 2010

One of the properties of fossils is to provide unique ontogenies that have the potential to inform us of developmental patterns and processes in the past. Although fossilized ontogenies are fairly rare, size series of relatively complete specimens for more than 90 fish species have been documented in the literature. These fossilized ontogenies are known for most major phylogenetic groups of fishes and have a broad stratigraphic range extending from the Silurian to the Quaternary with a good representation during the Devonian. Classically, size series have been studied in terms of size and shape differences, where subsequently allometric changes were used as indicators of heterochronic changes in Paleozoic placoderms and sarcopterygians. Quantitative analyses of fossilized ontogenies of dipnoans have been interpreted in terms of morphological integration and fluctuating asymmetry. Recently, reconstructed sequences of ossification have been used to identify recurrent patterns of similar development in actinopterygians and sarcopterygians in order to infer phenotypic developmental modularity and saltatory pattern of development. Phylogenetic and temporal landmarks are put forward for some of the major developmental patterns in the evolution of fishes. © 2009 Elsevier Ltd. All rights reserved. Source


Magozzi S.,UK National Oceanography Center | Calosi P.,University of Quebec at Rimouski
Global Change Biology | Year: 2014

Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing temperature helps providing more accurate predictions on species vulnerability to warming. © 2014 John Wiley & Sons Ltd. Source


Dufresne F.,University of Quebec at Rimouski | Stift M.,University of Konstanz | Vergilino R.,University of Guelph | Mable B.K.,University of Glasgow
Molecular Ecology | Year: 2014

Despite the importance of polyploidy and the increasing availability of new genomic data, there remain important gaps in our knowledge of polyploid population genetics. These gaps arise from the complex nature of polyploid data (e.g. multiple alleles and loci, mixed inheritance patterns, association between ploidy and mating system variation). Furthermore, many of the standard tools for population genetics that have been developed for diploids are often not feasible for polyploids. This review aims to provide an overview of the state-of-the-art in polyploid population genetics and to identify the main areas where further development of molecular techniques and statistical theory is required. We review commonly used molecular tools (amplified fragment length polymorphism, microsatellites, Sanger sequencing, next-generation sequencing and derived technologies) and their challenges associated with their use in polyploid populations: that is, allele dosage determination, null alleles, difficulty of distinguishing orthologues from paralogues and copy number variation. In addition, we review the approaches that have been used for population genetic analysis in polyploids and their specific problems. These problems are in most cases directly associated with dosage uncertainty and the problem of inferring allele frequencies and assumptions regarding inheritance. This leads us to conclude that for advancing the field of polyploid population genetics, most priority should be given to development of new molecular approaches that allow efficient dosage determination, and to further development of analytical approaches to circumvent dosage uncertainty and to accommodate 'flexible' modes of inheritance. In addition, there is a need for more simulation-based studies that test what kinds of biases could result from both existing and novel approaches. © 2013 John Wiley & Sons Ltd. Source


Legagneux P.,University of Quebec at Rimouski
Biology letters | Year: 2013

Behavioural responses can help species persist in habitats modified by humans. Roads and traffic greatly affect animals' mortality not only through habitat structure modifications but also through direct mortality owing to collisions. Although species are known to differ in their sensitivity to the risk of collision, whether individuals can change their behaviour in response to this is still unknown. Here, we tested whether common European birds changed their flight initiation distances (FIDs) in response to vehicles according to road speed limit (a known factor affecting killing rates on roads) and vehicle speed. We found that FID increased with speed limit, although vehicle speed had no effect. This suggests that birds adjust their flight distance to speed limit, which may reduce collision risks and decrease mortality maximizing the time allocated to foraging behaviours. Mobility and territory size are likely to affect an individuals' ability to respond adaptively to local speed limits. Source


Boulangeat I.,CNRS Alpine Ecology Laboratory | Gravel D.,University of Quebec at Rimouski | Thuiller W.,CNRS Alpine Ecology Laboratory
Ecology Letters | Year: 2012

Although abiotic factors, together with dispersal and biotic interactions, are often suggested to explain the distribution of species and their abundances, species distribution models usually focus on abiotic factors only. We propose an integrative framework linking ecological theory, empirical data and statistical models to understand the distribution of species and their abundances together with the underlying community assembly dynamics. We illustrate our approach with 21 plant species in the French Alps. We show that a spatially nested modelling framework significantly improves the model's performance and that the spatial variations of species presence-absence and abundances are predominantly explained by different factors. We also show that incorporating abiotic, dispersal and biotic factors into the same model bring new insights to our understanding of community assembly. This approach, at the crossroads between community ecology and biogeography, is a promising avenue for a better understanding of species co-existence and biodiversity distribution. © 2012 Blackwell Publishing Ltd/CNRS. Source

Discover hidden collaborations