Paris, France

Paris Descartes University - Sorbonne Paris Cité , also known as "Paris V", is a public research university in Paris, France. It belongs to the leading academic alliance Sorbonne Paris Cité. It was established in order to succeed the medicine department of the world's second oldest academic institution, the University of Paris , shortly before the latter officially ceased to exist on December 31, 1970, as a consequence of the French cultural revolution of 1968, often referred to as "the French May". It is one of the best and the most prestigious French universities, mainly in the areas of medical science, biomedical science, law, computer science, economics and psychology.Headquartered in the historic École de Chirurgie in the 6th arrondissement of Paris, the university strongly focuses on medical science , biomedical science , social science , mathematics, computer science and law .A major pole of research and learning, Paris Descartes - Sorbonne Paris Cité is one of the most prestigious universities in France and the best one in its main domains. On that basis among others, it was rated by the 2013 QS World University Ranking 51-100th in Pharmacy and Pharmacology , 101-150th in Biological science , 100th in Medicine , 151-200th in Psychology , 151-200th in Linguistics , and 151-200th in Law .The University Paris Descartes supports a modern approach of social science on the basis of fieldwork, participant observation and ethnography . The dual master's degree in partnership with other important French academic institutions such as the École Normale Supérieure emphasizes opportunities offered as far as research is concerned.Faculty members have included eminent jurists, doctors and politicians. Wikipedia.


Time filter

Source Type

Patent
Institute Curie, French National Center for Scientific Research, French Institute of Health, Medical Research, Assistance Publique Hopitaux De Paris and University of Paris Descartes | Date: 2016-07-29

A composition that can be used as a vaccine containing means for targeting at least one antigen to dendritic cells and as adjuvants a granulocyte macrophage colony stimulating factor and a CpG oligodeoxynucleotide and/or a CpG-like oligodeoxynucleotide. This composition can used to treat cancers, infectious diseases caused by bacterial, viral, fungal, parasitic or protozoan infections, allergies and/or autoimmune diseases.


Patent
French Institute of Health, Medical Research, French National Center for Scientific Research, Genethon, University of Paris Descartes, École Nationale Supérieure de Chimie de Paris, University of Évry Val d'Essonne and Assistance Publique Hopitaux De Paris | Date: 2016-09-16

The present invention relates to a method for treating a Leber congenital amaurosis in a patient harbouring the mutation c.2991+1655 A>G in the CEP290 gene, comprising the step of administering to said patient at least one antisense oligonucleotide complementary to nucleic acid sequence that is necessary for preventing splicing of the cryptic exon inserted into the mutant c.2291+1655 A>G CEP290 mRNA


Patent
French Institute of Health, Medical Research, University of Paris Descartes, Fondation Imagine, Assistance Publique Hopitaux De Paris Aphp, French National Center for Scientific Research, University Grenoble Alpes, French Atomic Energy Commission and University of Burgundy | Date: 2015-02-18

The present invention relates to methods and pharmaceutical compositions for the treatment of diseases mediated by the NRP-1/OBR complex signaling pathway. In particular, the present invention relates to a method for treating a disease selected from the group consisting of cancers, obesity and obesity related diseases, anorexia, autoimmune diseases and infectious diseases in a subject in need thereof comprising administering the subject with a therapeutically effective amount of an antagonist of the NRP-1/OBR signaling pathway.


Patent
French Institute of Health, Medical Research, University of Paris Descartes and Assistance Publique Hopitaux De Paris Aphp | Date: 2015-04-29

The present invention relates to methods and pharmaceutical compositions for treating vaso-occlusive crises. In particular, the present invention relates to a method of treating a vaso-occlusive crisis in a subject in need thereof comprising administering to the subject a therapeutically effective amount of agent capable of degrading, destabilizing or depleting the blood-borne extracellular DNA from the blood of the subject.


Patent
Institute Pasteur Paris, French National Center for Scientific Research, University of Paris Descartes and Assistance Publique Hopitaux De Paris | Date: 2016-10-12

The present invention relates to polynucleotides enabling the rapid, simple and specific detection of Group B Streptococcus highly-virulent ST-17 clones. The present invention also relates to the polypeptides encoded by said polynucleotides, as well as to antibodies directed or raised against said polypeptides. The present invention also relates to kits and methods for the specific detection of Group B Streptococcus highly-virulent ST-17 clones, using the polynucleotides, the polypeptides or the antibodies according to the invention.


Patent
Institute Curie and University of Paris Descartes | Date: 2015-04-21

An in vitro method for determining whether a patient has, or is at risk of having or developing an autoimmune disease or for assessing the severity or predicting the outcome of an autoimmune disease, comprising a step of detecting or quantifying in a biological sample obtained from said patient an immune anti-IL2 response, peptides specifically recognised by anti-IL2 antibodies or IL-2-specific T cells of T1D, systemic lupus erythematosus, rheumatoid arthritis, Sjgrens syndrome and autoimmune polymyositis patients, and pharmaceutical compositions.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SC1-PM-04-2016 | Award Amount: 9.99M | Year: 2017

Sudden cardiac arrest (SCA) causes ~20% of all deaths in Europe. SCA is lethal within minutes if left untreated and survival rates are presently only 5-20%. Therefore, there is a large medical need to improve SCA prevention and treatment. Designing effective individualized prevention and treatment strategies requires knowledge on genetic and environmental risk factors. So far, these efforts have been hampered by the lack of sufficiently large study cohorts of SCA patients with detailed information. Obtaining SCA patient samples is challenging as the condition happens suddenly and unexpectedly. In this project, leading European scientific teams which have created large relevant population cohorts, mostly dedicated to SCA research, join forces to fully exploit available data towards improving SCA management. This will be done by: - Building an unique and growing database of >100.000 (DNA) samples including >20.000 SCA patient samples, by combining existing European databases and infrastructures. - Identifying risk factors (inherited, acquired, environmental) and first-response treatment strategies that may explain the differences in SCA occurrence and survival between European countries - Collaborating with professional networks, such as the European Heart Rhythm Association, and European Resuscitation Council, to translate the outcomes into changes in clinical practice and influencing European health policies on SCA management.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-29-2016 | Award Amount: 4.70M | Year: 2016

Cardiovascular disease (CVD), more specifically, vulnerable plaque rupture, remains the major cause of death for people at middle age. The CVENT consortium will revolutionize screening, diagnosis and monitoring of CVD by means of a compact photoacoustic imaging (PAI) system for vulnerable plaque imaging. In the carotid arteries feeding the brain, vulnerable plaque rupture initiates cerebrovascular ischemic attacks. The state-of-the-art decision-making approach for a high-risk surgical intervention to avoid plaque rupture is based on stenosis severity alone, measured with ultrasound (US) imaging. However, this does not distinguish between vulnerable (rupture-prone) and stable (harmless) plaques, leading to severe overtreatment. Consequently, there is a worldwide unmet and urgent clinical need for functional information to enable in-depth diagnosis of carotid plaque vulnerability, avoiding cardiovascular events (CVENT) and reducing overtreatment risk. The objective of the CVENT consortium is the development of a portable multimodal and multiwavelength PAI system with a 3 cm imaging depth, for diagnosis and monitoring of carotid plaque vulnerability. The combination of high optical contrast of PAI and the high resolution of US will be used to identify plaque vulnerability markers, typically lipid pools and intra-plaque haemorrhage. Improved diagnosis of carotid plaque vulnerability will lead to a significant reduction in CVD-related disability and mortality. Simultaneously, by stratifying patients into high and low risk groups, overtreatment is reduced, leading to better allocation of healthcare funds. The CVENT consortium unites leading research groups, clinicians, industrial partners, and their expertise on R&D and a focus on exploitation, creating a breakthrough in carotid plaque vulnerability diagnosis. CVENT will bring together leading experts in the field of CVD, functional US imaging and PAI, introducing clinically applied PAI into the vascular medical arena.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-18-2015 | Award Amount: 6.00M | Year: 2016

The incidence of paediatric onset Inflammatory Bowel Diseases (PIBD) has risen dramatically in recent decades. Compared to adult forms, PIBD reflects a more severe disease, more often requiring aggressive treatment with immunomodulators, and thereby exposing children to a life-long risk of serious disease and treatment-related adverse events, such as infections and malignancies. Therefore, there is an urgent need to develop strategies which balance, on an individual basis, therapeutic effectiveness with risks of treatment. The overall goal of this proposal is to develop and validate a treatment algorithm for PIBD based on high or low risk predictors for early complicated or relapsing disease. This will improve effectiveness, while reducing treatment related risks and life-long complications due to uncontrolled disease progression. To attain this goal 3 specific aims are proposed under the umbrella of an international network, the PIBD-net: 1) Development of an accessible and feasible risk-stratified treatment algorithm for new onset paediatric IBD on an existing inception cohort and validation in an independent cohort 2) Generation of a prospective large longterm real world inception cohort in a registry designed to analyze effectiveness and safety signals and correlate them to individual risk factors 3) Design and performance of a risk algorithm-based prospective large-scale multicenter randomized clinical trial (RCT) (stratification into high or low risk groups based on specific aim#1) in order to provide optimal personalized therapy: low risk azathioprine vx. methotrexate, high risk : methotrexate vx. adalimumab This project will translate into the first risk-stratified PIBD treatment algorithms allowing optimization of medical therapy while minimizing treatment-related risk (personalized medicine).

Loading University of Paris Descartes collaborators
Loading University of Paris Descartes collaborators