Palermo, Italy

Time filter

Source Type

Grant
Agency: Cordis | Branch: H2020 | Program: ECSEL-RIA | Phase: ECSEL-04-2015 | Award Amount: 18.33M | Year: 2016

The ageing population and related increase in chronic diseases put considerable pressure on both the healthcare system and the society, resulting in an unsustainable rise of healthcare costs. As a result there is an urgent need to improve efficiency of care and reduce hospitalisation time in order to control cost and increase quality of life. Addressing this need, medical applications need to become less invasive and improve disease detection, diagnosis and treatment using advanced imaging and sensing techniques. ASTONISH will deliver breakthrough imaging and sensing technologies for monitoring, diagnosis and treatment applications by developing smart optical imaging technology that extends the use of minimally invasive diagnosis and treatment and allows for unobtrusive health monitoring. The project will integrate miniaturized optical components, data processing units and SW applications into smart imaging systems that are less obtrusive, cheaper, more reliable and easier to use than state of the art systems. This results into 6 demonstrators by which the technologies will be validated and which allow for pre-clinical testing in the scope of the project. The overall concept within ASTONISH builds on the development and application of common imaging/sensing technologies. Smart algorithms, multimodal fusion techniques and biomedical signal processing will process the acquired data and advanced user interfaces will simplify the complex clinical tasks. These technology components will be integrated to build application specific solutions for physiological signs monitoring, tumour detection, minimally invasive surgery, brain function monitoring and rehabilitation. The ASTONISH partners cover the full value chain, from semiconductor manufacturing to clinical centres testing the final application. The proposed innovations improve the global competitiveness of the European industry in the healthcare domain.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: LCE-33-2016 | Award Amount: 2.86M | Year: 2017

Despite process heat is recognized as the application with highest potential among solar heating and cooling applications, Solar Heat for Industrial Processes (SHIP) still presents a modest share of about 0.3% of total installed solar thermal capacity. As of todays technology development stage economic competitiveness restricted to low temperature applications; technology implementation requiring interference with existing heat production systems, heat distribution networks or even heat consuming processes - Solar thermal potential is mainly identified for new industrial capacity in outside Americas and Europe. In this context, INSHIP aims at the definition of a ECRIA engaging major European research institutes with recognized activities on SHIP, into an integrated structure that could successfully achieve the coordination objectives of: more effective and intense cooperation between EU research institutions; alignment of different SHIP related national research and funding programs, avoiding overlaps and duplications and identifying gaps; acceleration of knowledge transfer to the European industry, to be the reference organization to promote and coordinate the international cooperation in SHIP research from and to Europe, while developing coordinated R&D TRLs 2-5 activities with the ambition of progressing SHIP beyond the state-of-the-art through: an easier integration of low and medium temperature technologies suiting the operation, durability and reliability requirements of industrial end users; expanding the range of SHIP applications to the EI sector through the development of suitable process embedded solar concentrating technologies, overcoming the present barrier of applications only in the low and medium temperature ranges; increasing the synergies within industrial parks, through centralized heat distribution networks and exploiting the potential synergies of these networks with district heating and with the electricity grid.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: LCE-01-2014 | Award Amount: 4.13M | Year: 2015

The concept is based on the generation of electricity from salinity gradient using Reverse Electrodialysis with artificial saline solutions operating in a closed-loop. The original salinity gradient is regenerated by a separation step that uses heat at 40 - 100 C. The regenerated solutions can be stored at very low costs and the stack can react within seconds, providing flexibility to the power system. It is a quiet technology operating under normal pressures and temperatures imposing no risks. The industrial partners ensures the MRL will be kept aligned with the advances in TRL. The overall objective is to prove this revolutionary concept, develop the necessary materials, components and know-how for bringing it to the level of a lab prototype generating electricity from low-grade heat at higher efficiencies and lower costs than ever achieved to date. Specific objectives: Select the most suitable technologies for the regeneration process and the combinations of salts and solvents that can maximise the system performance. Create new knowledge for developing: membranes for the selected solutions; membrane manufacturing concepts that can be scaled-up for high volume and low-cost production; efficient stacks suitable for this application; energy efficient regeneration processes. Implement and validate a process simulation tool to analyse the performance under different configurations and operating conditions. Evaluate and improve the performance of the overall system through tests on a lab-prototype, identifying potential up-scaling and operational issues (System efficiencies reaching 15% and power densities of 25 W/m2 of cell pair). Define a development roadmap, taking into account environmental, social and regulatory issues, leading to levelised cost of electricity below 0.03 Euro/kWh by 2025 to 2030. Involve target group representatives to the Advisory Board and communicate the key results in order to initiate a dialogue and facilitate the engagement of key actors.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: NMP-24-2015 | Award Amount: 9.80M | Year: 2016

The REvivED water project will establish electrodialysis (ED) as the new standard providing a source of safe, affordable, and cost-competitive drinking water, using less than half the energy required by state-of-the-art Reverse Osmosis (RO) plants. The innovations of the project constitute a technology platform with a very wide field of potential applications. All components and systems have reached at least TRL4 and will be further developed reaching at least TRL7. The main focus of the project will be on the following applications: 1. A simplified ED system that can be used for brackish water desalination (8 pilots in developing countries) or for tap-water softening (2 pilots in Germany and the Netherlands). 2. A multistage ED system for industrial-scale seawater desalination, which will be demonstrated to reach energy consumption as low as 1.5 kWh/m3 (1 pilot in the Netherlands). 3. Combinations of the multistage ED system with the latest salinity gradient power systems (Reverse ElectroDialysis - RED), which can further reduce energy consumption for seawater desalination to the region of 1 kWh/m3 (1 pilot in the Netherlands). 4. The versatile nature of the developed innovations will be demonstrated by testing their combinations with Reverse Osmosis (RO) systems (1 pilot in Spain). This will allow initial market introduction, without the need to replace the extensive RO infrastructure. The pilot systems in developing countries will be located in critical areas where the project partner PHAESUN has local offices in Africa (Eritrea, Ivory Coast, Somalia, Djibouti and Ethiopia), Asia (Dubai, and India) and Latin America (Panama). The consortium brings together leading partners covering the whole value chain and ensuring exploitation of the results. It is clearly industry driven, and it gives European industry the chance to take the lead of the ED revival and face the competition from the US that is also actively pursuing this important growth market.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 3.99M | Year: 2017

Sustainable Multi-functional Automated Resilient Transport Infrastructures ETN, will bring together a stimulating platform where the stakeholders of the transport infrastructure sector will work alongside world-wide experts in smartening of systems (developers of high-tech sensors, advanced monitoring equipment, automated structures, etc.,) with direct support from the roads, railways and airports managers. This environment will enable talented graduates to conceive the transport infrastructure network of the future and will provide them with world-wide extended training in each of the four pillars supporting the SMARTI vision: designed to last by maximising recycling and minimizing impact (Sustainable), conceived not for transport purposes only and towards optimisation of land use (Multi-functional), equipped for communicating with managers and users, to allow a more intuitive use and a simplified management (Automated), built to be adaptable to natural and anthropogenic hazards (Resilient). The consortium will combine and share expertise to offer advanced scientific training structured into network-wide thematic taught modules combined with original research supported by secondments that will expose fellows to both academia and industry and will also allow them with the possibility to be award with Doctoratus Europeus. The training programme will be enriched by specific modules to support job creation by enabling the fellows with business, entrepreneurship, communication, project management and other transferrable skills. A tailored Dissemination strategy will evaluate the variety of channels and means appropriate to allow the fellows to be prepared and successful in reaching both scientific and larger public audiences. As a result, SMARTI ETN will create a new generation of highly-skilled and appealing professionals that will be in great demand in this rapidly expanding field and will benefit Europe and developing countries


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: SPIRE-01-2016 | Award Amount: 5.78M | Year: 2016

The ReWaCEM project aims at reducing water use, wastewater production, energy use, valuable metal resource recovery and water footprint by between 30-90% in the metal plating, galvanizing and printed circuit board industry. In order to achieve these goals, ReWaCem will adopt two cutting edge membrane technologies suitable for the requirements of closed material cycles approaches and recovery concepts in metal processing industry: Diffusion Dialysis (DD) and Membrane Distillation (MD) as an integrated hybrid process. This combination of existing technologies will be adapted to fit the requirements of 4 pilot demonstration sites in representative industrial applications of the metallurgical industry in order to evaluate the accomplishment of the ReWaCEM goals. Through the evaluation of the demonstration a highly attractive technological solution for low energy wastewater treatment will be available to be entered into the large and growing market of metal processing. This market will profit significantly from the technological outcome of the innovation action, with cost savings and environmental benefits as relevant rewards. In order to maximise impact, the project consortium was selected carefully to represent all relevant stakeholders in the quadrant of end users, scientific partners, associations and decision makers and SMEs. The consortium will establish a dissemination & exploitation board that will create a substantial network of interest groups from agencies, industry, research SMEs and research centres as well as universities. The successful exploitation of the results will lead to a post project up-scaling of the technology and a step by step market introduction. Part of ReWaCEM will be to mobilise all relevant stakeholders into promoting innovative membrane solutions for industrial water and resources management, leading to the effective implementation of European directives and policies while creating market opportunities for European industry and SMEs.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: FCT-16-2015 | Award Amount: 4.46M | Year: 2016

PROTON aims at improving existing knowledge on the processes of recruitment to organised crime and terrorist networks (OCTN) through an innovative integration between social and computational sciences. Moving beyond the state of the art, this integration will support evidence-based policies at the international, national and local level. To achieve its aim, PROTON will complete three specific objectives: 1. Investigate the social, psychological and economic factors leading to OCTN (WP1 and 2), including their connection with cybercrime and the cyberspace (WP3). The factors will be transformed into input (WP4) for PROTONs final outputs, PROTON-S and PROTON Wizard (WP5), designed for helping policy makers to act more effectively against OCTN. 2. Develop PROTON-S, agent-based modelling (ABM) simulations of the effects of different societal and environmental changes on OCTN. PROTON-S will generate virtual societies in a computer laboratory, enabling to test the impact of different scenarios on the evolution of, and particularly individuals recruitment to, OCTN. 3. Develop PROTON Wizard, a user-friendly software tool embedding the results of the ABM simulations. PROTONs impact will improve the quality of prevention policies on OCTN, providing at the same time significant innovations in the social, technological and computational sciences. PROTON-S, based on simulations, will bear no ethical and societal risks, and will create a breakthrough in the understanding of OCTN, enabling better policies and stimulating further innovation. PROTON Wizard will provide the first support tool for policy makers at the international, national and local level, giving easy access to the most advanced scientific research. The participation of different policy makers and potential end-users throughout the whole project will make sure that the final results specifically meet their needs and expectations.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: MSCA-NIGHT-2016 | Award Amount: 512.74K | Year: 2016

Researchers love to engage with nature, society, with future and ultimately with all the complex challenges that will allow them to contribute to a better world. Researchers also love to engage with other people to make the quest theyre involved in a collective endeavour. All this make researchers persons passionate for engagement who are developing a growing sense of responsibility related to their work and their role in society. In such a professional life researchers experience strong driving forces such as enthusiasm, emotions, combined with new knowledge and innovative discoveries. All these elements are summarized in the acronym SHARPER - Sharing Researchers Passion for Engagement and Responsibility the name of the European Researchers Night in the Centre and South of Italy that will take place on the 30th of September 2016 and on the 29th of September 2017 simultaneously in five cities: Perugia, LAquila, Ancona and Palermo the four capital cities of the regions Marche, Umbria, Abruzzo, Sicily and in Cascina the city hosting the European Gravitational Observatory one of the cutting edge European research facilities. This network of cities combined with their Research Institutions and with their social and cultural actors provides a team of excellence and reliability both in the fields of research and science communication at national and international level. The SHARPER project will create effective communication bridges between researchers and the cities and communities they live and act within, through: street labs, exhibitions, performances in city squares or activities that will take place in focal city venues, where citizens use to spend their everyday life. SHARPER 2016-2017 will geographically broaden the impact of the communication actions of European Researchers Night in Italy massively engaging kids, young students, schools, associations and citizens at large actively involved by researchers since the planning phase of the activities.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: BG-10-2014 | Award Amount: 5.21M | Year: 2015

SUCCESS is bringing together an integrated team of scientists from all fields of fisheries and aquaculture science with industry partners and key stakeholders to work on solutions which shall improve the competitiveness of the European fisheries and aquaculture sector. The supply-side of seafood markets is limited from both sea fisheries and aquaculture. At the same time demand for seafood products is increasing. In a globalised economy, the conjunction of these two trends should generate high opportunities for any seafood production activity. However, both fisheries and aquaculture companies are facing key challenges, which currently hinder them reaping the full benefits of seafood markets expansion, and even question their sustainability. As a whole, the EU fisheries sector remains at low levels of profitability and sustainability. The SUCCESS project will examine two strategies to improve the competitiveness of the sector: (i) increasing demand for EU seafood products, especially improving the awareness of the advantages of European production (including sustainability requirements and adjustment to market evolution); and (ii) cost reduction in certain production segments. For both strategies development on world markets as well as consumer preferences and awareness will be analysed. Additionally, SUCCESS will explore the different sectors along the value chain (from fisheries and aquaculture producers via processing companies, wholesalers, retailers to direct marketing to mobile fishmongers and restaurants) and their potential for improvements in competitiveness. These analyses also include long term predictions about the viability of certain production systems and will be considered in specific case studies on for example mussel production, shrimp fisheries, whitefish, traditional pond aquaculture and new aquaculture production systems.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: INFRAIA-1-2014-2015 | Award Amount: 5.09M | Year: 2015

We propose a set of integrated Activities in the High Energy Astrophysics Domain (AHEAD) in response to the INFRAIA-2014-2015 call Research Infrastructures for High EnergyAstrophysics. The overall objective of AHEAD is to integrate national efforts in high-energy Astrophysics and to promote the domain at the European level, to keep its community at the cutting edge of science and technology in this competitive research area and ensure that space observatories for high-energy astrophysics are at the state of the art. AHEAD will integrate key research infrastructures for on-ground test and calibration of space-based sensors and electronics and promote their coordinated use. In parallel, the best facilities for data analysis of high-energy astrophysical observatories will be made available to the European community. The technological development will focus on the improvement of selected critical technologies, background modeling, cross calibration, and feasibility studies of space-based instrumentation for the benefit of future X-ray and gamma-ray missions, and the best exploitation of existing observatories. AHEAD will support the community via grants for collaborative studies, dissemination of results, and promotion of workshops. A strong public outreach package will ensure that the domain is well publicized at national, European and International level. The virtual circle infrastructure - networking - joint research activities, as devised in AHEAD, serves to establish strong connections between institutes and industry to create the basis for a more rapid advancement of high-energy astrophysical science, space-oriented instrumentation and cutting-edge sensor technology in Europe. This enables the development of new technologies and the associated growth of the European technology market, - with a dedicated technology innovation package - as well as the creation of a new generation of researchers.

Loading University of Palermo collaborators
Loading University of Palermo collaborators