Palermo, Italy

University of Palermo

www.unipa.it/
Palermo, Italy

Time filter

Source Type

News Article | May 23, 2017
Site: phys.org

ESA has been testing equipment, techniques and working methods for missions with astronauts in inner space for many years. Delving inside Earth and exploring caves often parallels the exploration of outer space, from a lack of sunlight to working in cramped spaces and relying on equipment for safety. An extension of ESA's Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills course, this CAVES-X1 expedition saw Luca join a scientific expedition organised by La Venta Association and the Commissione Grotte Eugenio Boegan in the La Cucchiara caves near Sciacca, Sicily. Whereas such activities are arranged specifically for training astronauts, course designer Loredana Bessone says, "We now want astronauts to take part in existing scientific caving and geological expeditions – scientific exploration does not get more real than this." The team arrived on 19 May and spent two days exploring the area, which includes a 100 m-deep abyss. As this cave reaches 37°C, the explorers also tried out cooling vests – another similarity to astronauts in spacesuits. Luca took geological samples and tried a new way of probing hard-to-reach spaces: a Flyability drone deliberately bumped into walls to learn how to navigate and to map tight areas that are too dangerous for humans. ESA's course coordinator, Francesco Sauro, an experienced caver and field geologist, remarks: "The drone used its thermal camera to map how the cave continued all the way to an unexplored area featuring water, impossible to reach for humans. "These tests will help us understand which technologies can be used in future exploration of lava tubes on Mars, for example." ESA's strategy sees humans and robots working together to explore and build settlements on planetary bodies, as well as improving our understanding of our origins, and the origins of life in our Solar System. The short expedition ends today with a conference on the use of novel technologies in underground exploration and scientific research of extreme environments at the University of Palermo in Sicily. A talk by Luca at ESA's astronaut centre on preparing astronauts for space exploration can be viewed below:


News Article | April 20, 2017
Site: www.eurekalert.org

ILC 2017: Eight studies being presented at The International Liver Congress™ 2017 demonstrate contrasting evidence on the potential link between direct-acting antiviral treatment for hepatitis C and liver cancer According to data from eight studies being presented at The International Liver Congress™ 2017 in Amsterdam, The Netherlands, there remains continued debate on whether patients are at risk of developing liver cancer after achieving sustained virologic response (SVR) with a direct-acting antiviral (DAA) regimen for Hepatitis C virus (HCV). Investigators will present the results of their studies that show both sides of the argument - DAA therapy is associated with a higher risk of liver cancer compared with interferon-based therapy, versus there is no difference in liver cancer risk following cure with either therapy. Whilst remarkable progress has been made in the development of successful antiviral therapies for HCV infection, some recent studies suggest that curing patients does not eliminate the risk of developing liver cancer. There also appears to be an unexpectedly high rate of liver cancer (also known as hepatocellular carcinoma [HCC]) recurrence in patients who previously had their tumour treated successfully and had received DAAs.1 This claim was further supported by a Spanish study led by Dr Maria Reig and Dr Mariño, Hospital Clinic Barcelona, Spain in which patients with HCV and HCC who had previously been cured of HCC received DAA therapy. After a median 12.4 month follow-up, following treatment with DAAs, the rate of HCC coming back (recurrence) was 31.2% (24/77) and of those who received HCC treatment at recurrence, 30% (6/20) of patients presented progression in the immediate 6-month follow-up. This is an update of the study that will be published in the May 2017 issue of Seminars in Liver Disease, and is available here: https:/ . "Our study offers further support to previous findings that there is an unexpected high recurrence rate of hepatocellular carcinoma associated with DAAs, and that this association may result in a more aggressive pattern of recurrence and faster tumour progression," said Dr Maria Reig, Barcelona Clinic Liver Cancer Group, Hospital Clinic Barcelona, Spain, and lead author of the study. "These data indicate that there needs to be further research conducted in this area, clarifying the mechanism for the association between liver cancer recurrence and DAA therapy." Identifying those patients at risk of liver cancer is essential, a task that Dr Etienne Audureau, Public Health, Henri Mondor University Hospital, Créteil, France, and colleagues attempted to achieve by developing a prognostic tool for HCC. They found that in patients with severe scarring of the liver due to HCV (compensated cirrhosis), failure to achieve SVR was the most influential factor in predicting liver cancer. In addition, risk factors for liver cancer differ according to SVR status. The investigators recommend that in patients with compensated cirrhosis, eradication of HCV should be achieved before liver function is impaired and people who have achieved SVR should be monitored for liver cancer after 50 years of age. The mechanisms behind the development of liver cancer following HCV cure are not yet understood. One group of investigators led by Prof Thomas Baumert, Inserm Institute for Viral and Liver Diseases, University of Strasbourg, France, aimed to investigate if HCV infections produce epigenetic and transcriptional changes that persist after the infection is cured, and whether these epigenetic changes drive liver disease and HCC following cure. They found that the epigenetic and transcriptional changes are only partially reversed by DAAs and persist after HCV cure, suggesting that these changes are a driver for liver cancer that develops after HCV infection has been cured. The investigators concluded that these findings open a new perspective to develop novel biomarkers to identify patients at high risk of HCC and provide an opportunity to develop urgently needed strategies for HCC prevention. On the other side of the debate, a systematic review, meta-analyses, and meta-regression study, by Prof Gregory Dore and Dr Reem Waziry from The Kirby Institute, UNSW Sydney, and colleagues, found no evidence for higher risk of HCC occurrence or recurrence following DAA treatment, compared with interferon-based HCV therapy. A total of 41 studies, including 26 on HCC occurrence and 15 on HCC recurrence (in total, n=13,875 patients) were included. In studies assessing HCC occurrence, average follow up was shorter and average age was higher in DAA studies compared to interferon studies; incidence was lower with longer follow-up and younger age. In studies assessing HCC recurrence, average follow up was also shorter. Ultimately, in the meta-regression analysis, no evidence in favour of a differential HCC occurrence or recurrence was found between DAA and interferon regimens, after adjusting for study follow-up and age. "Recent studies have reported contradicting evidence on risk of hepatocellular carcinoma following direct-acting antiviral therapy; our aim was to bring some clarity to this," said Prof Gregory Dore, Kirby Institute and lead author of the study. "These data show the higher incidence of HCC observed following DAA therapy can be explained by the shorter duration of follow-up and older age of participants, rather than the DAA treatment regimen." A Scottish study, led by Dr Hamish Innes, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, found that the risk of liver cancer following SVR was not associated with the use of DAAs, but baseline risk factors. Furthermore, risk of HCC development was similar in patients taking interferon-free regimens versus interferon-containing regimens, following a multivariate adjustment (IRR: 0.96, p=0.929) and no significant differences in HCC risk were found when treatment regimen was defined in terms of DAA containing regimens versus DAA free regimens. These data indicate that rather than the treatment regimens themselves, it is the baseline risk factors that determine risk of hepatocellular carcinoma. Another interesting study in Japanese patients with HCV genotype 1 infection, found a reduced incidence of liver cancer following achievement of SVR after 12 weeks of therapy with an interferon-free regimen (ledipasvir plus sofosbuvir) to a similar degree as that obtained with an interferon-containing regimen (simeprevir with peginterferon plus ribavirin). This study, which was conducted by Dr Masaaki Korenaga, Kohnodai Hospital, National Center for Global Health and Medicine, Chiba, Japan, and colleagues, also found that unexpected development of liver cancer following SVR in patients without previous liver cancer could potentially be predicted by imaging procedures (computer tomography or enhanced magnetic resonance imaging). Similarly, a Chinese study led by Dr George Lau, from the Beijing 302-Hong Kong Humanity and Health Hepatitis C Diagnosis and Treatment Centre, in Beijing, China, found no increase in the incidence of liver cancer in patients who achieved SVR12 with DAA compared to peginterferon plus ribavirin. A Sicilian study conducted by Dr Vincenza Calvaruso, University of Palermo, Palermo, Italy, and colleagues, demonstrated that patients who achieved SVR with DAAs had a similar risk of developing liver cancer when compared to historical controls of patients with compensated cirrhosis who achieved SVR after interferon-based therapy. In addition, those who achieved SVR with DAAs had a lower risk of developing liver cancer than those patients whose HCV infection was not cured. "The original observations made by researchers from the Barcelona Clinic Liver Cancer Group have sparked a huge number of studies aimed at verifying the potential association between DAA treatment and increased HCC recurrence after cure," said Prof Francesco Negro, Divisions of Gastroenterology and Hepatology of Clinical Pathology, University Hospital of Geneva, and EASL Governing Board Member. "At this stage, there is no reason to alter treatment guidelines until the issue is definitively clarified. We cannot exclude, however, that we may have to revise post-SVR surveillance in some specific patient subgroups." This annual congress is the biggest event in the EASL calendar, attracting scientific and medical experts from around the world to learn about the latest in liver research. Attending specialists present, share, debate and conclude on the latest science and research in hepatology, working to enhance the treatment and management of liver disease in clinical practice. This year, the congress is expected to attract approximately 10,000 delegates from all corners of the globe. The International Liver Congress™ 2017 will take place from April 19 - 23, at the RAI Amsterdam, Amsterdam, The Netherlands. About The European Association for the Study of the Liver (EASL) Since its foundation in 1966, this not-for-profit organisation has grown to over 4,000 members from all over the world, including many of the leading hepatologists in Europe and beyond. EASL is the leading liver association in Europe, having evolved into a major European Association with international influence, with an impressive track record in promoting research in liver disease, supporting wider education and promoting changes in European liver policy. Contact For more information, please contact the ILC Press Office at: Session title: Parallel session: Liver tumours: from patient stratification to management Time, date, and location of session: 16:00 - 18:00, Thursday 20 April, Elicium 2 Abstract: No evidence for higher risk of hepatocellular carcinoma occurrence or recurrence following direct-acting antiviral HCV therapy: A systematic review, meta-analyses, and meta-regression (PS160), 16:00 - 16:15 Gregory Dore, Australia Session title: Parallel session: HCV: post SVR management and complications Time, date, and location of session: 16:00 - 18:00, Thursday 20 April, Hall 5 Abstracts presented in order of appearance in press release: Tumour recurrence after Interferon-free treatment for hepatitis C in patients with previously treated hepatocellular carcinoma discloses a more aggressive pattern and faster tumour growth (PS031), 16:00 - 16:15 Maria Reig, Spain Identifying residual risk of hepatocellular carcinoma following hepatitis C virus eradication in compensated cirrhosis: decision-tree and random forest models developed in the French multicenter prospective ANRS CO12 CirVir cohort (PS034), 16:45 - 17:00 Etienne Audureau, France Hepatitis C virus-induced epigenetic and transcriptional changes persist post cure (PS033), 16:30 - 16:45 Thomas Baumert, France Among cirrhotic patients with a hepatitis C sustained viral response, the risk of de-novo hepatocellular carcinoma relates to baseline factors and not the use of direct acting antivirals: results from a nationwide cohort (PS035), 17:00 - 17:15 Hamish Innes, United Kingdom Sustained virologic response by ledipasvir/sofosbuvir reduces the incidence of hepatocellular carcinoma in Japanese patients with HCV genotype 1 infection. - Comparison with Simeprevir with peginterferon plus ribavirin (PS036), 17:15 - 17:30 Masaaki Korenaga, Japan No increase in the occurrence rate of hepatocellular carcinoma in Chinese treated by direct-acting antivirals compared to Interferon after eradication of hepatitis c virus: A long-term follow-up (PS037), 17:30 - 17:45 George Lau, China Occurrence of hepatocellular carcinoma in patients with hepatitis C virus related liver disease treated with direct-acting antivirals (PS038), 17:45 - 18:00 Vincenza Calvaruso, Italy Gregory Dore: Advisory board member and receives honorarium from Gilead, Merck, Abbvie, Bristol-Myers Squibb, Janssen, has received research grant funding from Gilead, Merck, Abbvie, Bristol-Myers Squibb, Janssen, and travel sponsorship from Gilead, Merck, Abbvie, and Bristol-Myers Squibb Vincenza Calvaruso: Advisory Board for AbbVie, BMS, Gilead Sciences and Intercept. Grant and research support for MSD 1 Reig M et al. Unexpected early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy; a note of caution. J Hepatol. 2016;65:719-726.


Grant
Agency: European Commission | Branch: H2020 | Program: ECSEL-RIA | Phase: ECSEL-04-2015 | Award Amount: 18.33M | Year: 2016

The ageing population and related increase in chronic diseases put considerable pressure on both the healthcare system and the society, resulting in an unsustainable rise of healthcare costs. As a result there is an urgent need to improve efficiency of care and reduce hospitalisation time in order to control cost and increase quality of life. Addressing this need, medical applications need to become less invasive and improve disease detection, diagnosis and treatment using advanced imaging and sensing techniques. ASTONISH will deliver breakthrough imaging and sensing technologies for monitoring, diagnosis and treatment applications by developing smart optical imaging technology that extends the use of minimally invasive diagnosis and treatment and allows for unobtrusive health monitoring. The project will integrate miniaturized optical components, data processing units and SW applications into smart imaging systems that are less obtrusive, cheaper, more reliable and easier to use than state of the art systems. This results into 6 demonstrators by which the technologies will be validated and which allow for pre-clinical testing in the scope of the project. The overall concept within ASTONISH builds on the development and application of common imaging/sensing technologies. Smart algorithms, multimodal fusion techniques and biomedical signal processing will process the acquired data and advanced user interfaces will simplify the complex clinical tasks. These technology components will be integrated to build application specific solutions for physiological signs monitoring, tumour detection, minimally invasive surgery, brain function monitoring and rehabilitation. The ASTONISH partners cover the full value chain, from semiconductor manufacturing to clinical centres testing the final application. The proposed innovations improve the global competitiveness of the European industry in the healthcare domain.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: LCE-33-2016 | Award Amount: 2.86M | Year: 2017

Despite process heat is recognized as the application with highest potential among solar heating and cooling applications, Solar Heat for Industrial Processes (SHIP) still presents a modest share of about 0.3% of total installed solar thermal capacity. As of todays technology development stage economic competitiveness restricted to low temperature applications; technology implementation requiring interference with existing heat production systems, heat distribution networks or even heat consuming processes - Solar thermal potential is mainly identified for new industrial capacity in outside Americas and Europe. In this context, INSHIP aims at the definition of a ECRIA engaging major European research institutes with recognized activities on SHIP, into an integrated structure that could successfully achieve the coordination objectives of: more effective and intense cooperation between EU research institutions; alignment of different SHIP related national research and funding programs, avoiding overlaps and duplications and identifying gaps; acceleration of knowledge transfer to the European industry, to be the reference organization to promote and coordinate the international cooperation in SHIP research from and to Europe, while developing coordinated R&D TRLs 2-5 activities with the ambition of progressing SHIP beyond the state-of-the-art through: an easier integration of low and medium temperature technologies suiting the operation, durability and reliability requirements of industrial end users; expanding the range of SHIP applications to the EI sector through the development of suitable process embedded solar concentrating technologies, overcoming the present barrier of applications only in the low and medium temperature ranges; increasing the synergies within industrial parks, through centralized heat distribution networks and exploiting the potential synergies of these networks with district heating and with the electricity grid.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: NMP-24-2015 | Award Amount: 9.80M | Year: 2016

The REvivED water project will establish electrodialysis (ED) as the new standard providing a source of safe, affordable, and cost-competitive drinking water, using less than half the energy required by state-of-the-art Reverse Osmosis (RO) plants. The innovations of the project constitute a technology platform with a very wide field of potential applications. All components and systems have reached at least TRL4 and will be further developed reaching at least TRL7. The main focus of the project will be on the following applications: 1. A simplified ED system that can be used for brackish water desalination (8 pilots in developing countries) or for tap-water softening (2 pilots in Germany and the Netherlands). 2. A multistage ED system for industrial-scale seawater desalination, which will be demonstrated to reach energy consumption as low as 1.5 kWh/m3 (1 pilot in the Netherlands). 3. Combinations of the multistage ED system with the latest salinity gradient power systems (Reverse ElectroDialysis - RED), which can further reduce energy consumption for seawater desalination to the region of 1 kWh/m3 (1 pilot in the Netherlands). 4. The versatile nature of the developed innovations will be demonstrated by testing their combinations with Reverse Osmosis (RO) systems (1 pilot in Spain). This will allow initial market introduction, without the need to replace the extensive RO infrastructure. The pilot systems in developing countries will be located in critical areas where the project partner PHAESUN has local offices in Africa (Eritrea, Ivory Coast, Somalia, Djibouti and Ethiopia), Asia (Dubai, and India) and Latin America (Panama). The consortium brings together leading partners covering the whole value chain and ensuring exploitation of the results. It is clearly industry driven, and it gives European industry the chance to take the lead of the ED revival and face the competition from the US that is also actively pursuing this important growth market.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 3.99M | Year: 2017

Sustainable Multi-functional Automated Resilient Transport Infrastructures ETN, will bring together a stimulating platform where the stakeholders of the transport infrastructure sector will work alongside world-wide experts in smartening of systems (developers of high-tech sensors, advanced monitoring equipment, automated structures, etc.,) with direct support from the roads, railways and airports managers. This environment will enable talented graduates to conceive the transport infrastructure network of the future and will provide them with world-wide extended training in each of the four pillars supporting the SMARTI vision: designed to last by maximising recycling and minimizing impact (Sustainable), conceived not for transport purposes only and towards optimisation of land use (Multi-functional), equipped for communicating with managers and users, to allow a more intuitive use and a simplified management (Automated), built to be adaptable to natural and anthropogenic hazards (Resilient). The consortium will combine and share expertise to offer advanced scientific training structured into network-wide thematic taught modules combined with original research supported by secondments that will expose fellows to both academia and industry and will also allow them with the possibility to be award with Doctoratus Europeus. The training programme will be enriched by specific modules to support job creation by enabling the fellows with business, entrepreneurship, communication, project management and other transferrable skills. A tailored Dissemination strategy will evaluate the variety of channels and means appropriate to allow the fellows to be prepared and successful in reaching both scientific and larger public audiences. As a result, SMARTI ETN will create a new generation of highly-skilled and appealing professionals that will be in great demand in this rapidly expanding field and will benefit Europe and developing countries


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: SPIRE-01-2016 | Award Amount: 5.78M | Year: 2016

The ReWaCEM project aims at reducing water use, wastewater production, energy use, valuable metal resource recovery and water footprint by between 30-90% in the metal plating, galvanizing and printed circuit board industry. In order to achieve these goals, ReWaCem will adopt two cutting edge membrane technologies suitable for the requirements of closed material cycles approaches and recovery concepts in metal processing industry: Diffusion Dialysis (DD) and Membrane Distillation (MD) as an integrated hybrid process. This combination of existing technologies will be adapted to fit the requirements of 4 pilot demonstration sites in representative industrial applications of the metallurgical industry in order to evaluate the accomplishment of the ReWaCEM goals. Through the evaluation of the demonstration a highly attractive technological solution for low energy wastewater treatment will be available to be entered into the large and growing market of metal processing. This market will profit significantly from the technological outcome of the innovation action, with cost savings and environmental benefits as relevant rewards. In order to maximise impact, the project consortium was selected carefully to represent all relevant stakeholders in the quadrant of end users, scientific partners, associations and decision makers and SMEs. The consortium will establish a dissemination & exploitation board that will create a substantial network of interest groups from agencies, industry, research SMEs and research centres as well as universities. The successful exploitation of the results will lead to a post project up-scaling of the technology and a step by step market introduction. Part of ReWaCEM will be to mobilise all relevant stakeholders into promoting innovative membrane solutions for industrial water and resources management, leading to the effective implementation of European directives and policies while creating market opportunities for European industry and SMEs.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: FCT-16-2015 | Award Amount: 4.46M | Year: 2016

PROTON aims at improving existing knowledge on the processes of recruitment to organised crime and terrorist networks (OCTN) through an innovative integration between social and computational sciences. Moving beyond the state of the art, this integration will support evidence-based policies at the international, national and local level. To achieve its aim, PROTON will complete three specific objectives: 1. Investigate the social, psychological and economic factors leading to OCTN (WP1 and 2), including their connection with cybercrime and the cyberspace (WP3). The factors will be transformed into input (WP4) for PROTONs final outputs, PROTON-S and PROTON Wizard (WP5), designed for helping policy makers to act more effectively against OCTN. 2. Develop PROTON-S, agent-based modelling (ABM) simulations of the effects of different societal and environmental changes on OCTN. PROTON-S will generate virtual societies in a computer laboratory, enabling to test the impact of different scenarios on the evolution of, and particularly individuals recruitment to, OCTN. 3. Develop PROTON Wizard, a user-friendly software tool embedding the results of the ABM simulations. PROTONs impact will improve the quality of prevention policies on OCTN, providing at the same time significant innovations in the social, technological and computational sciences. PROTON-S, based on simulations, will bear no ethical and societal risks, and will create a breakthrough in the understanding of OCTN, enabling better policies and stimulating further innovation. PROTON Wizard will provide the first support tool for policy makers at the international, national and local level, giving easy access to the most advanced scientific research. The participation of different policy makers and potential end-users throughout the whole project will make sure that the final results specifically meet their needs and expectations.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BG-10-2014 | Award Amount: 5.21M | Year: 2015

SUCCESS is bringing together an integrated team of scientists from all fields of fisheries and aquaculture science with industry partners and key stakeholders to work on solutions which shall improve the competitiveness of the European fisheries and aquaculture sector. The supply-side of seafood markets is limited from both sea fisheries and aquaculture. At the same time demand for seafood products is increasing. In a globalised economy, the conjunction of these two trends should generate high opportunities for any seafood production activity. However, both fisheries and aquaculture companies are facing key challenges, which currently hinder them reaping the full benefits of seafood markets expansion, and even question their sustainability. As a whole, the EU fisheries sector remains at low levels of profitability and sustainability. The SUCCESS project will examine two strategies to improve the competitiveness of the sector: (i) increasing demand for EU seafood products, especially improving the awareness of the advantages of European production (including sustainability requirements and adjustment to market evolution); and (ii) cost reduction in certain production segments. For both strategies development on world markets as well as consumer preferences and awareness will be analysed. Additionally, SUCCESS will explore the different sectors along the value chain (from fisheries and aquaculture producers via processing companies, wholesalers, retailers to direct marketing to mobile fishmongers and restaurants) and their potential for improvements in competitiveness. These analyses also include long term predictions about the viability of certain production systems and will be considered in specific case studies on for example mussel production, shrimp fisheries, whitefish, traditional pond aquaculture and new aquaculture production systems.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRAIA-1-2014-2015 | Award Amount: 5.09M | Year: 2015

We propose a set of integrated Activities in the High Energy Astrophysics Domain (AHEAD) in response to the INFRAIA-2014-2015 call Research Infrastructures for High EnergyAstrophysics. The overall objective of AHEAD is to integrate national efforts in high-energy Astrophysics and to promote the domain at the European level, to keep its community at the cutting edge of science and technology in this competitive research area and ensure that space observatories for high-energy astrophysics are at the state of the art. AHEAD will integrate key research infrastructures for on-ground test and calibration of space-based sensors and electronics and promote their coordinated use. In parallel, the best facilities for data analysis of high-energy astrophysical observatories will be made available to the European community. The technological development will focus on the improvement of selected critical technologies, background modeling, cross calibration, and feasibility studies of space-based instrumentation for the benefit of future X-ray and gamma-ray missions, and the best exploitation of existing observatories. AHEAD will support the community via grants for collaborative studies, dissemination of results, and promotion of workshops. A strong public outreach package will ensure that the domain is well publicized at national, European and International level. The virtual circle infrastructure - networking - joint research activities, as devised in AHEAD, serves to establish strong connections between institutes and industry to create the basis for a more rapid advancement of high-energy astrophysical science, space-oriented instrumentation and cutting-edge sensor technology in Europe. This enables the development of new technologies and the associated growth of the European technology market, - with a dedicated technology innovation package - as well as the creation of a new generation of researchers.

Loading University of Palermo collaborators
Loading University of Palermo collaborators