University of NorthCarolina

Charlotte, NC, United States

University of NorthCarolina

Charlotte, NC, United States

Time filter

Source Type

Campbell T.B.,Aurora University | Smeaton L.M.,Center for Biostatistics in Research | Kumarasamy N.,Center for Research and Education | Flanigan T.,Brown Medical School | And 146 more authors.
PLoS Medicine | Year: 2012

Background:Antiretroviral regimens with simplified dosing and better safety are needed to maximize the efficiency of antiretroviral delivery in resource-limited settings. We investigated the efficacy and safety of antiretroviral regimens with once-daily compared to twice-daily dosing in diverse areas of the world.Methods and Findings:1,571 HIV-1-infected persons (47% women) from nine countries in four continents were assigned with equal probability to open-label antiretroviral therapy with efavirenz plus lamivudine-zidovudine (EFV+3TC-ZDV), atazanavir plus didanosine-EC plus emtricitabine (ATV+DDI+FTC), or efavirenz plus emtricitabine-tenofovir-disoproxil fumarate (DF) (EFV+FTC-TDF). ATV+DDI+FTC and EFV+FTC-TDF were hypothesized to be non-inferior to EFV+3TC-ZDV if the upper one-sided 95% confidence bound for the hazard ratio (HR) was ≤1.35 when 30% of participants had treatment failure.An independent monitoring board recommended stopping study follow-up prior to accumulation of 472 treatment failures. Comparing EFV+FTC-TDF to EFV+3TC-ZDV, during a median 184 wk of follow-up there were 95 treatment failures (18%) among 526 participants versus 98 failures among 519 participants (19%; HR 0.95, 95% CI 0.72-1.27; p = 0.74). Safety endpoints occurred in 243 (46%) participants assigned to EFV+FTC-TDF versus 313 (60%) assigned to EFV+3TC-ZDV (HR 0.64, CI 0.54-0.76; p<0.001) and there was a significant interaction between sex and regimen safety (HR 0.50, CI 0.39-0.64 for women; HR 0.79, CI 0.62-1.00 for men; p = 0.01). Comparing ATV+DDI+FTC to EFV+3TC-ZDV, during a median follow-up of 81 wk there were 108 failures (21%) among 526 participants assigned to ATV+DDI+FTC and 76 (15%) among 519 participants assigned to EFV+3TC-ZDV (HR 1.51, CI 1.12-2.04; p = 0.007).Conclusion: EFV+FTC-TDF had similar high efficacy compared to EFV+3TC-ZDV in this trial population, recruited in diverse multinational settings. Superior safety, especially in HIV-1-infected women, and once-daily dosing of EFV+FTC-TDF are advantageous for use of this regimen for initial treatment of HIV-1 infection in resource-limited countries. ATV+DDI+FTC had inferior efficacy and is not recommended as an initial antiretroviral regimen.Trial Registration:http://www.ClinicalTrials.gov NCT00084136. © 2012.


Fletcher N.F.,University College Dublin | Meeker R.B.,University of NorthCarolina | Hudson L.C.,North Carolina State University | Callanan J.J.,University College Dublin
Veterinary Journal | Year: 2011

Feline immunodeficiency virus (FIV), like human immunodeficiency virus (HIV)-1, is a neurotropic lentivirus, and both natural and experimental infections are associated with neuropathology. FIV enters the brain early following experimental infection, most likely via the blood-brain and blood-cerebrospinal fluid barriers. The exact mechanism of entry, and the factors that influence this entry, are not fully understood. As FIV is a recognised model of HIV-1 infection, understanding such mechanisms is important, particularly as HIV enters the brain early in infection. Furthermore, the development of strategies to combat this central nervous system (CNS) infection requires an understanding of the interactions between the virus and the CNS. In this review the results of both in vitro and in vivo FIV studies are assessed in an attempt to elucidate the mechanisms of viral entry into the brain. © 2010 Elsevier Ltd.


McKay D.J.,University of NorthCarolina | Lieb J.D.,University of NorthCarolina | Lieb J.D.,Princeton University
Developmental Cell | Year: 2013

Animals have body parts made of similar cell types located at different axial positions, such as limbs. The identity and distinct morphology of each structure is often specified by the activity of different "master regulator" transcription factors. Although similarities in gene expression have been observed between body parts made of similar cell types, how regulatory information in the genome is differentially utilized to create morphologically diverse structures in development is not known. Here, we use genome-wide open chromatin profiling to show that among the Drosophila appendages, the same DNA regulatory modules are accessible throughout the genome ata given stage of development, except at the loci encoding the master regulators themselves. In addition, open chromatin profiles change over developmental time, and these changes are coordinated between different appendages. We propose that master regulators create morphologically distinct structures by differentially influencing the function of the same set of DNA regulatory modules. © 2013 Elsevier Inc.

Loading University of NorthCarolina collaborators
Loading University of NorthCarolina collaborators