Chapel Hill, NC, United States
Chapel Hill, NC, United States

The University of North Carolina at Chapel Hill is a coeducational public research university located in Chapel Hill, North Carolina, United States. North Carolina has been consistently listed among the highest and best ranked universities in the United States and is one of the original eight Public Ivy schools that provide an Ivy League experience for a public schooling price. After being chartered in 1789, the university first began enrolling students in 1795, which allows it to be one of three schools to claim the title of the oldest public university in the United States.The first public institution of higher education in North Carolina, the school opened its doors to students on February 12, 1795. The university offers degrees in over 70 courses of study through fourteen colleges and the College of Arts and science. All undergraduates receive a liberal arts education and have the option to pursue a major within the professional schools of the university or within the College of Arts and science from the time they obtain junior status. Under the leadership of President Kemp Plummer Battle, in 1877 North Carolina became coeducational and began the process of desegregation in 1951 when African-American graduate students were admitted under Chancellor Robert Burton House. In 1952, North Carolina opened its own hospital, UNC Health Care, for research and treatment, and has since specialized in cancer care. The school's students, alumni, and sports teams are known as "Tar Heels".The campus of North Carolina is located in Chapel Hill, North Carolina, a university town. The campus covers a rather small 729 acres over Chapel Hill's downtown area, encompassing places like the Morehead Planetarium and the many stores and shops located on Franklin Street. Students can participate in over 550 officially recognized student organizations. The student-run newspaper The Daily Tar Heel has won national awards for collegiate media, while the student radio station WXYC provided the world's first internet radio broadcast. North Carolina is one of the charter members of the Atlantic Coast Conference, which was founded on June 14, 1953. Competing athletically as the Tar Heels, North Carolina has achieved great success in sports, most notably in men's basketball, women's soccer, and women's field hockey. Wikipedia.

Time filter

Source Type

University of North Carolina at Chapel Hill | Date: 2016-12-06

The present invention relates to the ability of PLUNC proteins, such as SPLUNC1 and SPLUNC2, to bind to sodium channels and inhibit activation of the sodium channels. The invention further relates to methods for regulating of sodium absorption and fluid volume and treating disorders responsive to modulating sodium absorption by modulating the binding of PLUNC proteins to sodium channels.

University of North Carolina at Chapel Hill | Date: 2016-12-09

The present invention relates to trisodium diethylenetriamine pentaacetic acid (DTPA) prodrugs, such as, for example, DTPA di-ethyl esters. The invention further relates to compositions comprising DTPA prodrugs and methods of using the same.

University of Washington, University of North Carolina at Chapel Hill and University of Utah | Date: 2016-02-12

Disclosed are compositions and methods related intrinsic gene sets and methods and compositions related to detecting and classifying cancer.

University of North Carolina at Chapel Hill | Date: 2015-04-14

An organometallic complex of a tridentate bis(phosphine)-carbodicarbene ligand and a transition metal, is described. In some embodiments the ligand has the structure of Formula (I): The complexes are useful in methods of making an allylic amine carried out by reacting a 1,3-diene with a substituted amine in the presence of such an organometallic complex to produce by intermolecular hydroamination the allylic amine.

University of North Carolina at Chapel Hill | Date: 2015-03-13

Compounds suitable for use in providing male contraception, an assay method for identifying such compounds, and methods of providing contraception using the compounds, are provided. In one embodiment, the compounds described herein mimic the binding of anti-EPPIN antibodies to EPPIN, and thus inhibit the forward motility of sperm in humans and other primates. In another embodiment, the compounds described herein inhibit or enhance EPPIN-semenogelin binding, and inhibit forward motility of sperm. The assays described herein identify compounds which inhibit sperm motility, and can be carried out in a high throughput manner, using labeled recombinant EPPIN and semenogelin. The compounds can be used in oral or transdermal compositions to temporarily and reversibly inhibit male fertility. They can also be used in addition to, or in place of, spermicides in spermicidal compositions, such as those used in conjunction with condoms, diaphragms, and spermicidal jellies.

Methods, systems, and computer readable media for utilizing adaptive rectangular decomposition (ARD) to perform head-related transfer function (HRTF) simulations are disclosed herein. According to one method, the method includes obtaining a mesh model representative of head and ear geometry of a listener entity and segmenting a simulation domain of the mesh model into a plurality of partitions. The method further includes conducting an ARD simulation on the plurality of partitions to generate simulated sound pressure signals within each of the plurality of partitions and processing the simulated sound pressure signals to generate at least one HRTF that is customized for the listener entity.

Entegrion and University of North Carolina at Chapel Hill | Date: 2017-02-22

The present invention is directed to a hemostatic textile, comprising: a material comprising a combination of glass fibers and one or more secondary fibers selected from the group consisting of silk fibers; ceramic fibers; raw or regenerated bamboo fibers; cotton fibers; rayon fibers; linen fibers; ramie fibers; jute fibers; sisal fibers; flax fibers; soybean fibers; corn fibers; hemp fibers; lyocel fibers; wool; lactide and/or glycolide polymers; lactide/glycolide copolymers; silicate fibers; polyamide fibers; feldspar fibers; zeolite fibers, zeolite-containing fibers, acetate fibers; and combinations thereof; the hemostatic textile capable of activating hemostatic systems in the body when applied to a wound. Additional cofactors such as thrombin and hemostatic agents such as RL platelets, RL blood cells; fibrin, fibrinogen, and combinations thereof may also be incorporated into the textile. The invention is also directed to methods of producing the textile, and methods of using the textile to stop bleeding. (Drawing Figure 1)

Siegfried N.A.,University of North Carolina at Chapel Hill
Nature Methods | Year: 2014

Many biological processes are RNA-mediated, but higher-order structures for most RNAs are unknown, which makes it difficult to understand how RNA structure governs function. Here we describe selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) that makes possible de novo and large-scale identification of RNA functional motifs. Sites of 2′-hydroxyl acylation by SHAPE are encoded as noncomplementary nucleotides during cDNA synthesis, as measured by massively parallel sequencing. SHAPE-MaP-guided modeling identified greater than 90% of accepted base pairs in complex RNAs of known structure, and we used it to define a new model for the HIV-1 RNA genome. The HIV-1 model contains all known structured motifs and previously unknown elements, including experimentally validated pseudoknots. SHAPE-MaP yields accurate and high-resolution secondary-structure models, enables analysis of low-abundance RNAs, disentangles sequence polymorphisms in single experiments and will ultimately democratize RNA-structure analysis.

Furey T.S.,University of North Carolina at Chapel Hill
Nature Reviews Genetics | Year: 2012

Chromatin immunoprecipitation experiments followed by sequencing (ChIP-seq) detect protein-DNA binding events and chemical modifications of histone proteins. Challenges in the standard ChIP-seq protocol have motivated recent enhancements in this approach, such as reducing the number of cells that are required and increasing the resolution. Complementary experimental approaches-for example, DNaseI hypersensitive site mapping and analysis of chromatin interactions that are mediated by particular proteins-provide additional information about DNA-binding proteins and their function. These data are now being used to identify variability in the functions of DNA-binding proteins across genomes and individuals. In this Review, I describe the latest advances in methods to detect and functionally characterize DNA-bound proteins. © 2012 Macmillan Publishers Limited. All rights reserved.

Sullivan P.F.,University of North Carolina at Chapel Hill
Molecular Psychiatry | Year: 2013

Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-Analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-Analysis using 819 autosomal SNPs with P<0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-Analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5 × 10 -8), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083-53 822 102, minimum P=5.9 × 10 -9 at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status. © 2013 Macmillan Publishers Limited.

Loading University of North Carolina at Chapel Hill collaborators
Loading University of North Carolina at Chapel Hill collaborators