Chapel Hill, NC, United States
Chapel Hill, NC, United States

The University of North Carolina at Chapel Hill is a coeducational public research university located in Chapel Hill, North Carolina, United States. North Carolina has been consistently listed among the highest and best ranked universities in the United States and is one of the original eight Public Ivy schools that provide an Ivy League experience for a public schooling price. After being chartered in 1789, the university first began enrolling students in 1795, which allows it to be one of three schools to claim the title of the oldest public university in the United States.The first public institution of higher education in North Carolina, the school opened its doors to students on February 12, 1795. The university offers degrees in over 70 courses of study through fourteen colleges and the College of Arts and science. All undergraduates receive a liberal arts education and have the option to pursue a major within the professional schools of the university or within the College of Arts and science from the time they obtain junior status. Under the leadership of President Kemp Plummer Battle, in 1877 North Carolina became coeducational and began the process of desegregation in 1951 when African-American graduate students were admitted under Chancellor Robert Burton House. In 1952, North Carolina opened its own hospital, UNC Health Care, for research and treatment, and has since specialized in cancer care. The school's students, alumni, and sports teams are known as "Tar Heels".The campus of North Carolina is located in Chapel Hill, North Carolina, a university town. The campus covers a rather small 729 acres over Chapel Hill's downtown area, encompassing places like the Morehead Planetarium and the many stores and shops located on Franklin Street. Students can participate in over 550 officially recognized student organizations. The student-run newspaper The Daily Tar Heel has won national awards for collegiate media, while the student radio station WXYC provided the world's first internet radio broadcast. North Carolina is one of the charter members of the Atlantic Coast Conference, which was founded on June 14, 1953. Competing athletically as the Tar Heels, North Carolina has achieved great success in sports, most notably in men's basketball, women's soccer, and women's field hockey. Wikipedia.


Time filter

Source Type

Patent
Entegrion and University of North Carolina at Chapel Hill | Date: 2017-02-22

The present invention is directed to a hemostatic textile, comprising: a material comprising a combination of glass fibers and one or more secondary fibers selected from the group consisting of silk fibers; ceramic fibers; raw or regenerated bamboo fibers; cotton fibers; rayon fibers; linen fibers; ramie fibers; jute fibers; sisal fibers; flax fibers; soybean fibers; corn fibers; hemp fibers; lyocel fibers; wool; lactide and/or glycolide polymers; lactide/glycolide copolymers; silicate fibers; polyamide fibers; feldspar fibers; zeolite fibers, zeolite-containing fibers, acetate fibers; and combinations thereof; the hemostatic textile capable of activating hemostatic systems in the body when applied to a wound. Additional cofactors such as thrombin and hemostatic agents such as RL platelets, RL blood cells; fibrin, fibrinogen, and combinations thereof may also be incorporated into the textile. The invention is also directed to methods of producing the textile, and methods of using the textile to stop bleeding. (Drawing Figure 1)


Patent
University of North Carolina at Chapel Hill | Date: 2017-03-15

Described herein are methods for treating preterm labor, stopping labor prior to Cesarean delivery, preventing preterm labor, or controlling the timing of parturition by administering a chemical compound, such as a muscarinic receptor antagonist preferably a M, receptor antagonist, or a -3 adrenergic agonist. Also described are methods for treating preterm labor, stopping labor preparatory to Cesarean delivers, preventing preterm labor, or controlling the timing of parturition by administering an effective amount of transdermal stimulation, posterior tibial nerve stimulation or another form of non-invasive or invasive neuromodulatton, unstimulated or stimulated acupuncture, magnetic field therapy, or vibratory stimulation. These methods may be practiced individually, in combination with each other, or in combination with known tocolytic methods or medications.


Patent
University of North Carolina at Chapel Hill | Date: 2017-01-30

Uses of pyrrolopyrimidines with anti-Mer tyrosine kinase activity as anti-infective agents, immunostimulatory and immunomodulatory agents, anti-cancer agents (including against MerTK/ tumors and ITD and TKD mutant forms of Acute Myeloid Leukemia (AML)), and as adjunctive agents in combination with chemotherapeutic, radiation or other standard of care for neoplasms.


Patent
University of North Carolina at Chapel Hill | Date: 2017-04-26

The present invention relates to instruments and methods related to the in vivo analytical performance of percutaneously implanted, nitric oxide (NO)-releasing amperometric glucose biosensors. Needle-type glucose biosensors can be functionalized with NO-releasing polyurethane coatings designed to release similar total amounts of NO for rapid or slower (greater than 3 day) durations and remain functional as outer glucose sensor membranes. Relative to controls, NO-releasing sensors were characterized with improved numerical accuracy on days 1 and 3. Furthermore, the clinical accuracy and sensitivity of rapid NO-releasing sensors were superior to control and slower NO-releasing sensors at both 1 and 3 days implantation. In contrast, the slower, extended NO releasing-sensors were characterized by shorter sensor lag times (5.8 min) at 3, 7, and 10 d. Collectively, these results highlight the potential for NO release to enhance the analytical utility of in vivo glucose biosensors. Thus, the analytical performance benefit is dependent on the NO-release duration.


Patent
Lipomedix Pharmaceuticals Ltd. and University of North Carolina at Chapel Hill | Date: 2017-04-12

A method of treating neoplasia in a subject in need of treatment is provided by administering to the subject an amount of a prodrug of mitomycin C that yields a therapeutically effective amount of mitomycin C, in combination with radiation therapy. In one embodiment, the prodrug of mitomycin C is a liposomal-prodrug of mitomycin C. Together, the prodrug of mitomycin C and radiation therapy provide a synergistic antineoplastic effect.


Patent
University of North Carolina at Chapel Hill | Date: 2017-02-24

Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm^(2 )to about 25 cm^(2 )and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.


Patent
University of North Carolina at Chapel Hill | Date: 2017-02-24

The present invention relates to antibodies targeted to BDCA2 that deplete plasmacytoid dendritic cells (pDC) and methods of using the antibodies to treat disorders associated with pDC.


Patent
University of North Carolina at Chapel Hill | Date: 2017-03-01

Devices and methods generate an ordered restriction map of genomic DNA extracted from whole cells. The devices have a fluidic microchannel that merges into a reaction nanochannel that merges into a detection nanochannel at an interface where the nanochannel diameter decreases in size by between 50% to 99%. Intact molecules of DNA are transported to the reaction nanochannel and then fragmented in the reaction nanochannel using restriction endonuclease enzymes. The reaction nanochannel is sized and configured so that the fragments stay in an original order until they are injected into the detection nanochannel. Signal at one or more locations along the detection nanochannel is detected to map fragments in the order they occur along a long DNA molecule.


Patent
GeneCentric Diagnostics and University of North Carolina at Chapel Hill | Date: 2017-04-05

Methods and compositions are provided for the molecular subtyping of lung cancer samples. Specifically, a method of assessing whether a patients lung cancer subtype is adenocarcinoma, squamous cell carcinoma, or a neuroendocrine (encompassing both small cell carcinoma and carcinoid) is provided herein. A method for assessing whether a patients lung cancer subtype is adenocarcinoma, squamous cell carcinoma, small cell carcinoma or carcinoid lung cancer is also provided. The methods provided herein entail probing the levels of the classifier biomarkers of Table 1-Table 6 or a subset thereof at the nucleic acid level, in a lung cancer sample obtained from the patient. Based in part on the levels of the classifier biomarkers, the lung cancer sample is classified as a particular lung cancer subtype.


Furey T.S.,University of North Carolina at Chapel Hill
Nature Reviews Genetics | Year: 2012

Chromatin immunoprecipitation experiments followed by sequencing (ChIP-seq) detect protein-DNA binding events and chemical modifications of histone proteins. Challenges in the standard ChIP-seq protocol have motivated recent enhancements in this approach, such as reducing the number of cells that are required and increasing the resolution. Complementary experimental approaches-for example, DNaseI hypersensitive site mapping and analysis of chromatin interactions that are mediated by particular proteins-provide additional information about DNA-binding proteins and their function. These data are now being used to identify variability in the functions of DNA-binding proteins across genomes and individuals. In this Review, I describe the latest advances in methods to detect and functionally characterize DNA-bound proteins. © 2012 Macmillan Publishers Limited. All rights reserved.

Loading University of North Carolina at Chapel Hill collaborators
Loading University of North Carolina at Chapel Hill collaborators