Nice, France

The Nice Sophia Antipolis University is a university located in Nice, France and neighboring areas. It was founded in 1965 and is organized in eight faculties, two autonomous institutes and an engineering school. It also hosts the very first WWW Interactive Multipurpose Server . Wikipedia.


Time filter

Source Type

Patent
French National Center for Scientific Research and University of Nice Sophia Antipolis | Date: 2015-05-19

Antenna system comprising at least two radiating elements, a first line for neutralising electromagnetic coupling between the at least two radiating elements, at least one radiofrequency power supply line for each radiating element and at least one short-circuiting line to a ground plane of the antenna system per radiating element, characterised in that the antenna system further comprises: at least one second line for neutralising electromagnetic coupling between said at least two radiating elements; elements for activating at least some of the neutralisation lines; and in that the activation elements are configured to selectively activate or deactivate at least some of the neutralisation lines, in such a way that depending on the activation/deactivation thereof the neutralisation lines provide a maximum neutralisation of the electromagnetic coupling of the radiating elements for a plurality of different frequencies.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: DRS-01-2015 | Award Amount: 14.54M | Year: 2016

The ultimate purpose of ANYWHERE is to empower exposed responder institutions and citizens to enhance their anticipation and pro-active capacity of response to face extreme and high-impact weather and climate events. This will be achieved through the operational implementation of cutting-edge innovative technology as the best way to enhance citizens protection and saving lives. ANYWHERE proposes to implement a Pan-European multi-hazard platform providing a better identification of the expected weather-induced impacts and their location in time and space before they occur. This platform will support a faster analysis and anticipation of risks prior the event occurrence, an improved coordination of emergency reactions in the field and help to raise the self-preparedness of the population at risk. This significant step-ahead in the improvement of the pro-active capacity to provide adequate emergency responses is achievable capitalizing on the advanced forecasting methodologies and impact models made available by previous RTD projects, maximizing the uptake of their innovative potential not fully exploited up to now. The consortium is build upon a strong group of Coordinators of previous key EC projects in the related fields, together with 12 operational authorities and first responders institutions and 6 leading enterprises of the sector. The platform will be adapted to provide early warning products and locally customizable decision support services proactively targeted to the needs and requirements of the regional and local authorities, as well as public and private operators of critical infrastructures and networks. It will be implemented and demonstrated in 4 selected pilot sites to validate the prototype that will be transferred to the real operation. The market uptake will be ensured by the cooperation with a SME and Industry Collaborative Network, covering a wide range of sectors and stakeholders in Europe, and ultimately worldwide.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: INFRADEV-4-2014-2015 | Award Amount: 9.04M | Year: 2015

Marine (blue) biotechnology is the key to unlocking the huge economic potential of the unique biodiversity of marine organisms. This potential remains largely underexploited due to lack of connectivity between research services, practical and cultural difficulties in connecting science with industry, and high fragmentation of regional research, development and innovation (RDI) policies. To overcome these barriers, EMBRIC (European Marine Biological Resource Infrastructure Cluster) will link biological and social science research infrastructures (EMBRC, MIRRI, EU-OPENSCREEN, ELIXIR, AQUAEXCEL, RISIS) and will build inter-connectivity along three dimensions: science, industry and regions. The objectives of EMBRIC are to: (1) develop integrated workflows of high quality services for access to biological, analytical and data resources, and deploy common underpinning technologies and practices; (2) strengthen the connection of science with industry by engaging companies and by federating technology transfer (TT) services; (3) defragment RDI policies and involve maritime regions with the construction of EMBRIC. Acceleration of the pace of scientific discovery and innovation from marine bioresources will be achieved through: (i) establishment of multidisciplinary service-oriented technological workflows; (ii) joint development activities focusing on bioprospection for novel marine natural products, and marker-assisted selection in aquaculture; (iii) training and knowledge transfer; (iv) pilot transnational access to cluster facilities and services. EMBRIC will also connect TT officers from contrasted maritime regions to promote greater cohesion in TT practices. It will engage with policy-makers with the aim of consolidating a perennial pan-European virtual infrastructure cluster rooted in the maritime regions of Europe and underpinning the blue bioeconomy.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-22-2015 | Award Amount: 6.87M | Year: 2016

Mental, cognitive, vision and hearing health problems in elderly people are amongst the top 10 public health challenges in Europe. They frequently occur co-concurrently and have an additive negative effect on quality of life and mental well-being. To address this negative impact, and promote mental well-being, particularly from a gender and minority community perspective, SENSE-Cogs aim is to: (1) understand the inter-relationship of sensory impairments and cognitive and mental health functioning; (2) identify novel means of screening/detection for diagnostic and therapeutic purposes; and (3) translate this knowledge into clinical applications for the mental well-being of EU citizens. Methods: SENSE-Cog will use a mixed methods approach with a trans-EU, UK-led, multidisciplinary collaboration of 7 EU countries with academics, SMEs, city government and patient-public voice members. We will deliver linked Work Packages (WPs) reflecting 7 themes: (1) exploration: an epidemiological analysis of 5 large EU longitudinal databases to detect risk profiles for good and poor mental health outcomes; (2) assessment: the adaptation/validation of assessment tools for cognition and sensory impairment for vulnerable populations, including the development of a composite e-screen for sensory, cognitive and mental functioning; (3) intervention: a clinical trial of a newly developed sensory support intervention; (4) participation: an EU patient and public voice and innovative public engagement network to inform the WPs and communicate findings; (5) valuation: health economic and cost effectiveness analyses; & (6) management, governance/ethics. Impact: SENSE-Cog will promote earlier detection of sensory, cognitive and mental impairments to enable swift interventions, prevent deterioration and limit negative impacts.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: DRS-03-2015 | Award Amount: 21.10M | Year: 2016

Effective EU support to a large external crisis requires new approaches. In response to this challenge and to identified user and market needs from previous projects, Reaching Out proposes an innovative multi-disciplinary approach that will optimize the efforts, address a wide spectrum of users and maximize market innovation success. This approach results in five main objectives: to 1. Develop a Collaborative Framework, with distributed platforms of functional services, 2. Implement a flexible and open collaborative innovation process involving users and SMEs, suppliers, operators and research organisations, 3. Develop, upgrade and integrate 78 new connectable and interoperable tools, 4. Conduct 5 large scale demonstrations on the field: o health disaster in Africa (Epidemics in Guinea, with strong social and cultural issues), o natural disaster in a politically complex region and a desert environment (Earthquake in the Jordan Valley, led jointly by Jordan, Israel and Palestine), o three global change disasters in Asia targeted at large evacuation and humanitarian support in Bangladesh (long lasting floods, huge storms and associated epidemics,), EU citizen support and repatriation in Shanghai (floods & storm surge), radiological and industrial disasters impacting EU assets in Taiwan (flash floods, landslides, storm surge and chemical and radiological disasters), supported and co-funded by local authorities, 5. Provide recommendations and evaluations for future legal and policy innovations. The project will be conducted under the supervision of senior end-users. It will be performed with flexible and proven procedures by a balanced consortium of users, industry, innovative SMEs, RTO and academia in the EU and the demonstration regions. The main expected impact is to improve external disaster and crisis management efficiency and cost-benefit and increase the EU visibility whilst enhancing EU industry competitiveness and enlarging the market.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SC5-09-2016 | Award Amount: 5.08M | Year: 2016

NAIAD aims to operationalise the insurance value of ecosystems to reduce the human and economic cost of risks associated with water (floods and drought) by developing and testing - with key insurers and municipalities - the concepts, tools, applications and instruments (business models) necessary for its mainstreaming. We will do this in detail for 8 demonstration sites (DEMOs) throughout Europe and develop tools and methods applicable and transferable across all of Europe. The assumption is that Natural Assurance Schemes can reduce risk, especially to drought and flooding, and this risk reduction can be assessed and incorporated within insurance schemes. NAIADs conceptual frame is based on three pillars: (i) to help build a resilience approach to risk management through nature based solutions, (ii) the operationalisation and testing of scientific methods using a source-to-sea in DEMOs, (iii) the uptake of nature based solutions that are cost-effective and provide environmental, social and economic benefits. Trans-disciplinarity and stakeholder engagement are at the core of NAIAD for two reasons: first, because the conceptual and assessment methodologies combine physical, social and cultural and economic aspects, integrated into tools and methods but second, and most importantly road tested and validated with the stakeholders and end users themselves at the DEMOs. NAIAD will contribute to providing a robust framework for assessing insurance value for ecosystem services by (i) enabling full operationalisation through improved understanding of ecosystem functionality and its insurance value at a broad range of scales in both urban and rural context; (ii) making explicit the links between ecosystem values and social risk perception; and (iii) the application of developed methods and tools in water management by relevant stakeholders, especially businesses, public authorities and utilities.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: WATER-4a-2014 | Award Amount: 1.02M | Year: 2015

The role of ICT in contributing to the Smart Technologies EIP Priority is widely recognised by the scientific community and water business professionals. Despite relevant progress and innovation achieved in this field, several barriers hinder the implementation of Smart Water Technologies such as the fragmentation of the sector, slow adoption, absence of SME development, and no holistic vision of water supply considering its whole life cycle. Moreover, at present a fully integrated Smart Water Network does not exist in Europe or globally. Hence, current lack of knowledge of EU water research and innovation results on industry, policy makers, and citizens is slowing down the widespread application of solutions that can leverage the development of the urban systems and infrastructures of tomorrow. This scenario shows that achieving water-related challenges cannot progress with the sole contribution of research. In this sense, the project has the vision of establishing and supporting a thriving, interconnected ICT for water community to promote the dissemination and exploitation of EU funded activities and results in this area. WIDEST will address its goals through a project-to-project approach and the coordination among relevant stakeholders by means of five objectives that will include, amongst others: Conducting literature reviews of relevant academic and commercial references; Establishing common frameworks such as standards, guidelines, website, video channel; Organizing events including conferences, workshops, special sessions; Producing three Topical Roadmaps and one Overall Roadmap; Producing a Portfolio of effective ICT for water management technologies including the methodology to build, update and execute it. The project is backed by a strong consortium composed by institutions with proven track record and expertise across different facets of ICT for water research, including established connections with key stakeholders.


Antonny B.,University of Nice Sophia Antipolis
Annual Review of Biochemistry | Year: 2011

Bacteria and eukaryotic cells contain geometry-sensing tools in their cytosol: protein motifs or domains that recognize the curvature, concave or convex, deep or shallow, of lipid membranes. These sensors contrast with classical lipid-binding domains by their extended structure and, sometimes, counterintuitive chemistry. Among the sensors are long amphipathic helices, such as the ALPS motif and the N-terminal region of αα- synuclein, whose apparent "design defects"translate into a remarkable ability to specifically adsorb to the surface of small vesicles. Fundamental differences in the lipid composition of membranes of the early and late secretory pathways probably explain why some sensors use mostly electrostatics whereas others take advantage of the hydrophobic effect. Membrane curvature sensors help to organize very diverse reactions, such as lipid transfer between membranes, the tethering of vesicles at the Golgi apparatus, and the assembly-disassembly cycle of protein coats. © 2011 by Annual Reviews. All rights reserved.

Loading University of Nice Sophia Antipolis collaborators
Loading University of Nice Sophia Antipolis collaborators