Nebraska City, NE, United States

University of Nebraska Medical Center

www.unmc.edu
Nebraska City, NE, United States

The University of Nebraska Medical Center is a public center of health science research, patient care, and education located in Omaha, Nebraska.Founded as a private medical college in 1880, UNMC became part of the University of Nebraska System in 1902. Rapidly expanding in the early 20th century, the university founded a hospital, dental college, pharmacy college, and a graduate college of medicine. One of Omaha's top employers, UNMC has an endowment valued at $641 million and an economic impact of $3.8 billion.In 2014, UNMC was ranked 6th in the United States by U.S. News & World Report. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Panyam J.,University of Nebraska Medical Center | Labhasetwar V.,University of Nebraska Medical Center
Advanced Drug Delivery Reviews | Year: 2012

Biodegradable nanoparticles formulated from poly (d,l-lactide-co-glycolide) (PLGA) have been extensively investigated for sustained and targeted/localized delivery of different agents including plasmid DNA, proteins and peptides and low molecular weight compounds. Research about the mechanism of intracellular uptake of nanoparticles, their trafficking and sorting into different intracellular compartments, and the mechanism of enhanced therapeutic efficacy of nanoparticle-encapsulated agent at cellular level is more recent and is the primary focus of the review. Recent studies in our laboratory demonstrated rapid escape of PLGA nanoparticles from the endo-lysosomal compartment into cytosol following their uptake. Based on the above mechanism, various potential applications of nanoparticles for delivery of therapeutic agents to the cells and tissue are discussed. © 2012.


Bayles K.W.,University of Nebraska Medical Center
Nature Reviews Microbiology | Year: 2014

Although the concept of programmed cell death (PCD) in bacteria has been met with scepticism, a growing body of evidence suggests that it can no longer be ignored. Several recent studies indicate that the phenotypic manifestations of apoptosis, which are processes that are associated with ordered cellular disassembly in eukaryotes, are conserved in bacteria. In this Opinion article, I propose a model for the coordinated control of potential bacterial PCD effectors and argue that the processes involved are functionally analogous to eukaryotic PCD systems. © 2014 Macmillan Publishers Limited.


Carson S.D.,University of Nebraska Medical Center
Journal of Virology | Year: 2014

The immunoglobulin superfamily protein receptors for poliovirus, human rhinovirus, and coxsackievirus B (CVB) serve to bind the viruses to target cells and to facilitate the release of the virus genome by catalyzing the transition from the mature infectious virus to the A-particle uncoating intermediate. Receptor binding sites characterized by two equilibrium dissociation constants have been identified. The site with higher affinity is best observed at warmer temperatures and appears to correlate with the reversible conformational state in which the capsid is permeable to small molecules and peptides that are buried in the crystal structures are exposed. Measurements of CVB conversion to inactive particles over time in the presence of varied concentrations of soluble coxsackievirus and adenovirus receptor showed that the observed first-order rate constant varies with receptor concentration. The dose-response data, previously modeled as the sum of first-order reactions, have been used to evaluate models for the receptor-catalyzed conversion of CVB that include the high- and low-affinity binding sites associated with capsid breathing. Allosteric models wherein receptor binding shifts the equilibrium toward the open capsid conformation, in which the highaffinity binding site is available, best fit the data. © 2014 American Society for Microbiology.


Arikkath J.,University of Nebraska Medical Center
Frontiers in Cellular Neuroscience | Year: 2012

Dendrites are key integrators of synaptic information in neurons and play vital roles in neuronal plasticity. Hence, it is necessary that dendrite arborization is precisely controlled and coordinated with synaptic activity to ensure appropriate functional neural network integrity. In the past several years, it has become increasingly clear that several cell intrinsic and extrinsic mechanisms contribute to dendritic arborization. In this review, we will discuss some of the molecular mechanisms that regulate dendrite morphogenesis, particularly in cortical and hippocampal pyramidal neurons and some of the implications of aberrant dendritic morphology for human disease. Finally, we will discuss the current challenges and future directions in the field. © 2012 Arikkath.


Talmadge J.E.,University of Nebraska Medical Center | Gabrilovich D.I.,Wistar Institute
Nature Reviews Cancer | Year: 2013

Tumour-induced granulocytic hyperplasia is associated with tumour vasculogenesis and escape from immunity via T cell suppression. Initially, these myeloid cells were identified as granulocytes or monocytes; however, recent studies have revealed that this hyperplasia is associated with populations of multipotent progenitor cells that have been identified as myeloid-derived suppressor cells (MDSCs). The study of MDSCs has provided a wealth of information regarding tumour pathobiology, has extended our understanding of neoplastic progression and has modified our approaches to immune adjuvant therapy. In this Timeline article, we discuss the history of MDSCs, their influence on tumour progression and metastasis, and the crosstalk between tumour cells, MDSCs and the host macroenvironment. © 2013 Macmillan Publishers Limited. All rights reserved.


Fey P.D.,University of Nebraska Medical Center
Current Opinion in Microbiology | Year: 2010

It is well accepted that bacterial pathogens growing in a biofilm are recalcitrant to the action of most antibiotics and are resistant to the innate immune system. New treatment modalities are greatly warranted to effectively eradicate these infections. However, bacteria growing in a biofilm are metabolically unique in comparison to the bacteria growing in a planktonic state. Unfortunately, most antibiotics have been developed to inhibit the growth of bacteria in a planktonic mode of growth. This review focuses on the metabolism and physiology of biofilm growth with special emphasis on staphylococci. Future treatment options should include targeting unique metabolic niches found within bacterial biofilms in addition to the enzymes or compounds that inhibit biofilm accumulation molecules and/or interact with quorum sensing and intercellular bacterial communication. © 2010.


Shukla V.,University of Nebraska Medical Center
Blood | Year: 2013

Interferon regulatory factor 4 (IRF4) is a critical transcriptional regulator of B-cell development and function. A recent genome-wide single-nucleotide polymorphism (SNP) association study identified IRF4 as a major susceptibility gene in chronic lymphocytic leukemia (CLL). Although the SNPs located in the IRF4 gene were linked to a downregulation of IRF4 in CLL patients, whether a low level of IRF4 is critical for CLL development remains unclear. In rodents, CLL cells are derived from B1 cells whose population is dramatically expanded in immunoglobulin heavy chain Vh11 knock-in mice. We bred a Vh11 knock-in allele into IRF4-deficient mice (IRF4(-/-)Vh11). Here, we report that IRF4(-/-)Vh11 mice develop spontaneous early-onset CLL with 100% penetrance. Further analysis shows that IRF4(-/-)Vh11 CLL cells proliferate predominantly in spleen and express high levels of Mcl-1. IRF4(-/-)Vh11 CLL cells are resistant to apoptosis but reconstitution of IRF4 expression in the IRF4(-/-)Vh11 CLL cells inhibits their survival. Thus, our study demonstrates for the first time a causal relationship between low levels of IRF4 and the development of CLL. Moreover, our findings establish IRF4(-/-)Vh11 mice as a novel mouse model of CLL that not only is valuable for dissecting molecular pathogenesis of CLL but could also be used for therapeutic purposes.


Anaplastic large-cell lymphomas (ALCLs) encompass at least 2 systemic diseases distinguished by the presence or absence of anaplastic lymphoma kinase (ALK) expression. We performed genome-wide microRNA (miRNA) profiling on 33 ALK-positive (ALK[+]) ALCLs, 25 ALK-negative (ALK[-]) ALCLs, 9 angioimmunoblastic T-cell lymphomas, 11 peripheral T-cell lymphomas not otherwise specified (PTCLNOS), and normal T cells, and demonstrated that ALCLs express many of the miRNAs that are highly expressed in normal T cells with the prominent exception of miR-146a. Unsupervised hierarchical clustering demonstrated distinct clustering of ALCL, PTCL-NOS, and the AITL subtype of PTCL. Cases of ALK(+) ALCL and ALK(-) ALCL were interspersed in unsupervised analysis, suggesting a close relationship at the molecular level. We identified an miRNA signature of 7 miRNAs (5 upregulated: miR-512-3p, miR-886-5p, miR-886-3p, miR-708, miR-135b; 2 downregulated: miR-146a, miR-155) significantly associated with ALK(+) ALCL cases. In addition, we derived an 11-miRNA signature (4 upregulated: miR-210, miR-197, miR-191, miR-512-3p; 7 downregulated: miR-451, miR-146a, miR-22, miR-455-3p, miR-455-5p, miR-143, miR-494) that differentiates ALK(-) ALCL from other PTCLs. Our in vitro studies identified a set of 32 miRNAs associated with ALK expression. Of these, the miR-17∼92 cluster and its paralogues were also highly expressed in ALK(+) ALCL and may represent important downstream effectors of the ALK oncogenic pathway.


Lockridge O.,University of Nebraska Medical Center
Pharmacology and Therapeutics | Year: 2015

Phase I clinical trials have shown that pure human butyrylcholinesterase (BChE) is safe when administered to humans. A potential therapeutic use of BChE is for prevention of nerve agent toxicity. A recombinant mutant of BChE that rapidly inactivates cocaine is being developed as a treatment to help recovering cocaine addicts avoid relapse into drug taking. These clinical applications rely on knowledge of the structure, stability, and properties of BChE, information that is reviewed here. Gene therapy with a vector that sustains expression for a year from a single injection is a promising method for delivering therapeutic quantities of BChE. © 2014 Elsevier Inc.. All rights reserved.


Geng L.,University of Nebraska Medical Center
Oncogene | Year: 2014

Metastasis causes most deaths from colon cancer yet mechanistic understanding and therapeutic options remain limited. Here we show that expression of microRNA (miR)-192 is inversely correlated with metastatic potential of colon cancer cells. Ectopic expression of miR-192 sensitizes colon cancer cells to growth factor deprivation stress-induced apoptosis, whereas inhibition of miR-192 confers resistance. Overexpression of miR-192 inhibits metastatic colonization to the liver in an orthotopic mouse model of colon cancer. Alterations associated with the metastatic phenotype in the primary tumors include increased apoptosis, decreased proliferation and angiogenesis. Further studies indicate that miR-192 downregulates expression of Bcl-2, Zeb2 and VEGFA in vitro and in vivo, which is responsible for enhanced apoptosis, increased expression of E-cadherin and decreased angiogenesis in vivo, respectively. Finally, studies performed on human colonic adenocarcinoma show that expression of miR-192 is significantly reduced in neoplastic cells as compared with normal colonic epithelium. Importantly, there is a significant decrease in miR-192 expression in stage IV tumors when compared with stage I or II lesions. These findings indicate that miR-192 has an important role in colon cancer development and progression. Our studies underscore the clinical relevance and prognostic significance of miR-192 expression in colon cancer. Therefore, a major implication of our studies is that restoration of miR-192 expression or antagonism of its target genes (Bcl-2, Zeb2 or VEGFA) may have considerable therapeutic potential for anti-metastatic therapy in patients with colon cancer.

Loading University of Nebraska Medical Center collaborators
Loading University of Nebraska Medical Center collaborators