Braga, Portugal

University of Minho

www.uminho.pt/en
Braga, Portugal

Time filter

Source Type

Patent
University of Minho | Date: 2017-07-26

The present disclosure is part of the biomedicine field and particularly of dental implants. More specifically, the present disclosure relates to a dental implant comprising a tantalum coating nanostructured by anodization and the method for its production. The dental implant disclosed on the present disclosure allows a faster and effective osseointegration when compared with other commercial dental implants.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BIOTEC-2-2015 | Award Amount: 7.09M | Year: 2016

Omics data is not leveraged effectively in the biotechnology industry due to lack of tools to rapidly access public and private data and to design cellular manipulations or interventions based on the data. With this project we aim to make a broad spectrum of omics data useful to the biotechnology industry covering application areas ranging from industrial biotechnology to human health. We will develop novel approaches for integrative model-based omics data analysis to enable 1) Identification of novel enzymes and pathways by mining metagenomic data, 2) Data-driven design of cell factories for the production of chemicals and proteins, and 3) Analysis and design of microbial communities relevant to human health, industrial biotechnology and agriculture. All research efforts will be integrated in an interactive web-based platform that will be available for the industrial and academic research and development communities, in particular enhancing the competitiveness of biotech SMEs by economizing resources and reducing time-to-market within their respective focus areas. The platform will be composed of standardized and interoperable components that service-oriented bioinformatics SMEs involved in the project can reuse in their own products. An important aspect of the platform will be implementation of different access levels to data and software tools allowing controlling access to proprietary data and analysis tools. Two end-user companies will be involved in practical testing of the platform built within the project using proprietary omics data generated at the companies.


Grant
Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

Understanding the human brain is one of the greatest scientific challenges of our time. Such an understanding can provide profound insights into our humanity, leading to fundamentally new computing technologies, and transforming the diagnosis and treatment of brain disorders. Modern ICT brings this prospect within reach. The HBP Flagship Initiative (HBP) thus proposes a unique strategy that uses ICT to integrate neuroscience data from around the world, to develop a unified multi-level understanding of the brain and diseases, and ultimately to emulate its computational capabilities. The goal is to catalyze a global collaborative effort. During the HBPs first Specific Grant Agreement (SGA1), the HBP Core Project will outline the basis for building and operating a tightly integrated Research Infrastructure, providing HBP researchers and the scientific Community with unique resources and capabilities. Partnering Projects will enable independent research groups to expand the capabilities of the HBP Platforms, in order to use them to address otherwise intractable problems in neuroscience, computing and medicine in the future. In addition, collaborations with other national, European and international initiatives will create synergies, maximizing returns on research investment. SGA1 covers the detailed steps that will be taken to move the HBP closer to achieving its ambitious Flagship Objectives.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BG-01-2015 | Award Amount: 10.23M | Year: 2016

The objective of SponGES is to develop an integrated ecosystem-based approach to preserve and sustainably use vulnerable sponge ecosystems of the North Atlantic. The SponGES consortium, an international and interdisciplinary collaboration of research institutions, environmental non-governmental and intergovernmental organizations, will focus on one of the most diverse, ecologically and biologically important and vulnerable marine ecosystems of the deep-sea - sponge grounds that to date have received very little research and conservation attention. Our approach will address the scope and challenges of ECs Blue Growth Call by strengthening the knowledge base, improving innovation, predicting changes, and providing decision support tools for management and sustainable use of marine resources. SponGES will fill knowledge gaps on vulnerable sponge ecosystems and provide guidelines for their preservation and sustainable exploitation. North Atlantic deep-sea sponge grounds will be mapped and characterized, and a geographical information system on sponge grounds will be developed to determine drivers of past and present distribution. Diversity, biogeographic and connectivity patterns will be investigated through a genomic approach. Function of sponge ecosystems and the goods and services they provide, e.g. in habitat provision, bentho-pelagic coupling and biogeochemical cycling will be identified and quantified. This project will further unlock the potential of sponge grounds for innovative blue biotechnology namely towards drug discovery and tissue engineering. It will improve predictive capacities by quantifying threats related to fishing, climate change, and local disturbances. SpongeGES outputs will form the basis for modeling and predicting future ecosystem dynamics under environmental changes. SponGES will develop an adaptive ecosystem-based management plan that enables conservation and good governance of these marine resources on regional and international levels.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BIOTEC-02-2016 | Award Amount: 6.57M | Year: 2016

VOLATILE aims in the development of an innovative Volatile Fatty Acids Platform for the bioconversion of municipal solid bio-waste fraction and sludgy biowaste from other industries. The platform will be integrated in anaerobic digestion. The volatile fatty acids will be recovered continuously using sophisticated membrane technology and will be provided as feedstock / carbon source for value added fermentation approaches such as biopolymer PHA to be tested in material applications, single cell oil as precursor for oleochemical industry as well as long chain unsaturated health-promoting Omega-3 fatty acids to be used as food ingredient or nutraceutical. PHA will be obtained by bacterial fermentations, single cell oil from yeast cultivation and Omega-3 fatty acids via heterotrophic microalgae. The process development will be accompanied with sophisticated LCA study in order to ensure environmental friendly process design. The project will also work on solutions to typical barriers beside others such as quality requirements, continuous and sufficient feedstock supply or interaction between members of value chain using agent-based modelling. Also the effect of legal stimuli and restrictions and subsidies and taxes will be studied and a link between product requirements and markets will be established. VOLATILE will prepare a Roadmap indicating future research needs but also giving suggestion for legislative improvements. A CEN workshop will be initiated to discuss with external stakeholders rules for the VFAP & to set up standard requirements in the form of a CEN workshop Agreement.


Grant
Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

This project is the second in the series of EC-financed parts of the Graphene Flagship. The Graphene Flagship is a 10 year research and innovation endeavour with a total project cost of 1,000,000,000 euros, funded jointly by the European Commission and member states and associated countries. The first part of the Flagship was a 30-month Collaborative Project, Coordination and Support Action (CP-CSA) under the 7th framework program (2013-2016), while this and the following parts are implemented as Core Projects under the Horizon 2020 framework. The mission of the Graphene Flagship is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries. This will bring a new dimension to future technology a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the EU investment, both in terms of technological innovation and economic growth. To realise this vision, we have brought together a larger European consortium with about 150 partners in 23 countries. The partners represent academia, research institutes and industries, which work closely together in 15 technical work packages and five supporting work packages covering the entire value chain from materials to components and systems. As time progresses, the centre of gravity of the Flagship moves towards applications, which is reflected in the increasing importance of the higher - system - levels of the value chain. In this first core project the main focus is on components and initial system level tasks. The first core project is divided into 4 divisions, which in turn comprise 3 to 5 work packages on related topics. A fifth, external division acts as a link to the parts of the Flagship that are funded by the member states and associated countries, or by other funding sources. This creates a collaborative framework for the entire Flagship.


Peres N.M.R.,University of Minho
Reviews of Modern Physics | Year: 2010

An introduction to the transport properties of graphene combining experimental results and theoretical analysis is presented. In the theoretical description simple intuitive models are used to illustrate important points on the transport properties of graphene. The concept of chirality, stemming from the massless Dirac nature of the low-energy physics of the material, is shown to be instrumental in understanding its transport properties: the conductivity minimum, the electronic mobility, the effect of strain, the weak (anti)localization, and the optical conductivity. © 2010 The American Physical Society.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: PILOTS-02-2016 | Award Amount: 5.68M | Year: 2017

FLEXPOL aims to develop a pilot line for the production of a cost effective antimicrobial (AM) adhesive film for its use in hospitals. The obtained adhesive film will inhibit growth of a wide range of microbes and will be suitable for high-touch surfaces, providing a durable protection with good resistance. It will assure the highest level of hygiene and patient safety, reducing the use of disinfectants. These objectives will be achieved, using a multi-functional approach combining prevention of adhesion with killing of microorganisms, by means of essential oil (EO) emulsions embedded in a micro and nanopatterned polypropylene matrix. FLEXPOL covers the following key aspects: -It addresses the development, upscaling and demonstration in a relevant industrial environment of the production of films with AM, biocompatible and anti-adhesive properties. Existing extrusion and nanoimprinting pilot lines will act as the starting point in which new additives based on blends of EO will be incorporated. -Previously validated technologies constitute the basis of the approach. These technologies will be extended to large scale production and demonstrated in a real operational environment. The pilot line will include real time characterization for inspection of the film at the nanoscale. -Robustness and repeatability of film fabrication and its behavior in a real environment will be studied. The effectiveness of the solution will be compared with standard protocols. -Materials are chosen according to their cost for large-scale application. Productivity and cost of the fabrication process will be analyzed attending to energetic optimization of the product fabrication and the raw material cost. -Access to the pilot line for AM films in this or a different application will be ensured to European Industries at a cost that promotes technology transfer. -Non-technological aspects key for the marketing of the product (such as regulatory issues, HSE aspects, LCA...) are considered.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-RISE | Phase: MSCA-RISE-2016 | Award Amount: 1.30M | Year: 2017

The main research goal of the NEWEX Project is the construction and testing of the new innovative extruder. By the application of a new, patented concept of vital parts: innovative active grooved feed section (IAGFS), original rotational barrel segment (ORBS) and special screw (SS) a completely new breakthrough technology of extrusion and plasticizing systems will be achieved. It will ensure manufacturing the products of improved properties and will enable processing materials that couldnt be processed so far, as well as food materials, cosmetic and pharmaceutical. In parallel to the main RTD activities the NEWEX project is aiming at industry-academia cooperation and transfer of knowledge between organizations from central-eastern and Western Europe. All the projects activities will be performed by thoroughly planned secondments and appropriate hosting institutions between industrial and academic partners. The workplan consists of 7 Workpackages, out of which: WP1-4 focus on the investigation of extruder, extrusion process and extrudate properties and tasks aiming at the selection of the best solution of new extruder vital parts, than construction and testing of new generation extruder. WP5 concentrates on networking activities (workshops, training, knowledge exchange, etc.). WP6 aims at knowledge dissemination (participation in conferences, fairs, publications, etc.), WP7 is dedicated to management and administration of the whole project. The consortium consists of 6 organizations: 3 representing academic partners and 3 representing industry partners. Project is coordinated by Lublin University of Technology (Poland). Partners are: Technical University of Kosice (Slovakia), University of Minho (Portugal), Zamak-Mercator LLC (Poland), SEZ-Krompachy a.s. (Slovakia) and Borra s.r.o. (Czech Republic). Realization of NEWEX project will foster the real industry-academia cooperation which is of the key importance in terms of European Research Area development strategy.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: EINFRA-22-2016 | Award Amount: 2.00M | Year: 2017

Open Science is around the corner. Scientists and organizations see it as a way to speed up, improve quality and reward, while policy makers see it as a means to optimize cost of science and leverage innovation. Open Science is an emerging vision, a way of thinking, whose challenges always gaze beyond its actual achievements. De facto, todays scientific communication ecosystem lacks tools and practices to allow researchers to fully embrace Open Science. OpenAIRE-Connect aims to provide technological and social bridges, and deliver services enabling uniform exchange of research artefacts (literature, data, and methods), with semantic links between them, across research communities and content providers in scientific communication. It will introduce and implement the concept of Open Science as a Service (OSaaS) on top of the existing OpenAIRE infrastructure, delivering out-of-the-box, on-demand deployable tools. OpenAIRE-Connect will adopt an end-user driven approach (via the involvement of 5 prominent research communities), and enrich the portfolio of OpenAIRE infrastructure production services with a Research Community Dashboard Service and a Catch-All Notification Broker Service. The first will offer publishing, interlinking, packaging functionalities to enable them to share and re-use their research artifacts (introducing methods, e.g. data,software, protocols). This effort, supported by the harvesting and mining intelligence of the OpenAIRE infrastructure, will provide communities with the content and tools they need to effectively evaluate and reproduce science. OpenAIRE-Connect will combine dissemination and training with OpenAIREs powerful NOAD network engaging research communities and content providers in adopting such services. These combined actions will bring immediate and long-term benefits to scholarly communication stakeholders by affecting the way research results are disseminated, exchanged, evaluated, and re-used.

Loading University of Minho collaborators
Loading University of Minho collaborators