Entity

Time filter

Source Type

Baltimore, MD, United States

The University of Maryland, Baltimore County is an American public research university, located in Baltimore County, Maryland, United States, mostly in the community of Catonsville, approximately 10 minutes from downtown Baltimore City and 30 minutes from Washington, D.C. With a fall 2014 enrollment of about 14,000 students, over 50 undergraduate majors, over 60 graduate programs, and the first university research park in Maryland, UMBC has been named the #1 up-and-coming university for six years in a row, since 2009, by US News & World Report. In addition, US News & World Report has placed UMBC in the top ten for best undergraduate teaching six years in a row, being placed at #5, the second highest-ranked public university.Established as a part of the University System of Maryland in 1966, the university specializes in the natural science and engineering, while also offering programs in the liberal arts. Athletically, the UMBC Retrievers have 19 NCAA Division I teams that participate in the America East Conference. Wikipedia.


Girnun G.D.,University of Maryland Baltimore County
Seminars in Cell and Developmental Biology | Year: 2012

The critical role that altered cellular metabolism plays in promoting and maintaining the cancer phenotype has received considerable attention in recent years. For many years it was believed that aerobic glycolysis, also known as the Warburg Effect, played an important role in cancer. However, recent studies highlight the requirement of mitochondrial function, oxidative phosphorylation and biosynthetic pathways in cancer. This has promoted interest into mechanisms controlling these metabolic pathways. The PPARγ coactivator (PGC)-1 family of transcriptional coactivators have emerged as key regulators of several metabolic pathways including oxidative metabolism, energy homeostasis and glucose and lipid metabolism. While PGC-1s have been implicated in a number of metabolic diseases, recent studies highlight an important role in cancer. Studies show that PGC-1s have both pro and anticancer functions and suggests a dynamic role for the PGC-1s in cancer. We discuss in this review the links between PGC-1s and cancer, with a focus on the most well studied family member, PGC-1α. © 2012 Elsevier Ltd.


O'Donnell P.,University of Maryland Baltimore County
Schizophrenia Bulletin | Year: 2011

Schizophrenia and related mental disorders are common and devastating conditions for which we have a limited understanding of their origin and mechanisms. Although this apparent lack of progress despite vast research efforts could be due to difficulties in reproducing the disease in animals, animal work is now providing important insight onto possible pathophysiological changes in the brain. Postmortem studies of human brains have provided data indicating altered local inhibitory circuits in the cerebral cortex in schizophrenia and different developmental, pharmacological, and genetic animal models converge in revealing deficits in cortical interneuron function that can be associated with neurophysiological and behavioral alterations resembling aspects of the disease. Schizophrenia pathophysiology has a complex developmental trajectory because overt symptoms become evident during late adolescence despite earlier events contributing to the disease. The late incidence of schizophrenia can be explained by the protracted maturation of brain circuits implicated in the disease, particularly during adolescence. Excitatory and inhibitory processes in cortical circuits are tightly modulated by dopamine (DA), and many aspects of DA function in cortical regions acquire their adult profile during adolescence. This maturation fails to occur or is abnormal in several different rodent models of schizophrenia, yielding a number of functional and behavioral deficits relevant to the disease. Thus, periadolescent changes in cortical inhibitory circuits are a critical developmental stage likely implicated in the transition to schizophrenia. These observations provide the foundation for novel research-based therapeutic approaches and perhaps will even lead to ways to prevent the progression of the disease in predisposed subjects. © The Author 2009.


Fasano A.,University of Maryland Baltimore County
Physiological Reviews | Year: 2011

The primary functions of the gastrointestinal tract have traditionally been perceived to be limited to the digestion and absorption of nutrients and to electrolytes and water homeostasis. A more attentive analysis of the anatomic and functional arrangement of the gastrointestinal tract, however, suggests that another extremely important function of this organ is its ability to regulate the trafficking of macromolecules between the environment and the host through a barrier mechanism. Together with the gut-associated lymphoid tissue and the neuroendocrine network, the intestinal epithelial barrier, with its intercellular tight junctions, controls the equilibrium between tolerance and immunity to non-self antigens. Zonulin is the only physiological modulator of intercellular tight junctions described so far that is involved in trafficking of macromolecules and, therefore, in tolerance/immune response balance. When the finely tuned zonulin pathway is deregulated in genetically susceptible individuals, both intestinal and extraintestinal autoimmune, inflammatory, and neoplastic disorders can occur. This new paradigm subverts traditional theories underlying the development of these diseases and suggests that these processes can be arrested if the interplay between genes and environmental triggers is prevented by reestablishing the zonulin-dependent intestinal barrier function. This review is timely given the increased interest in the role of a "leaky gut" in the pathogenesis of several pathological conditions targeting both the intestine and extraintestinal organs. Copyright © 2011 the American Physiological Society.


Liggett S.B.,University of Maryland Baltimore County
Science Signaling | Year: 2011

A unifying mechanism by which G protein-coupled receptors (GPCRs) signal in cell type-dependent and G protein-independent ways has developed over the past decade. GPCR kinases (GRKs) are mediators of homologous desensitization: GRK phosphorylation of the receptors leads to the subsequent binding of β-arrestins, which partially quenches receptor coupling to G proteins. For some receptors, this GRK-mediated phosphorylation stimulates additional signaling through the scaffolding action of β-arrestin. These downstream signals are configured by β-arrestin conformation, which is dictated by the GRK phosphoacceptors on the receptors in a barcode-like fashion. Furthermore, each of the GRKs can potentially phosphorylate different serine and threonine residues on a given receptor, and the phosphorylation pattern can be biased by the receptor conformation established by bound ligand. Finally, the arrangement of potential GRK phosphorylation sites - and thus the conformation of β-arrestin and its effect on downstream signaling - can differ substantially between even closely related GPCRs stimulated by the same agonist. The diversity of the barcoding to flexible β-arrestin explains the multidimensional nature of signaling in the superfamily and represents new opportunities for drug discovery.


Dunning Hotopp J.C.,University of Maryland Baltimore County
Trends in Genetics | Year: 2011

Horizontal gene transfer is increasingly described between bacteria and animals. Such transfers that are vertically inherited have the potential to influence the evolution of animals. One classic example is the transfer of DNA from mitochondria and chloroplasts to the nucleus after the acquisition of these organelles by eukaryotes. Even today, many of the described instances of bacteria-to-animal transfer occur as part of intimate relationships such as those of endosymbionts and their invertebrate hosts, particularly insects and nematodes, while numerous transfers are also found in asexual animals. Both of these observations are consistent with modern evolutionary theory, in particular the serial endosymbiotic theory and Muller's ratchet. Although it is tempting to suggest that these particular lifestyles promote horizontal gene transfer, it is difficult to ascertain given the nonrandom sampling of animal genome sequencing projects and the lack of a systematic analysis of animal genomes for such transfers. © 2011 Elsevier Ltd.

Discover hidden collaborations