Maribor, Slovenia

University of Maribor

www.um.si/
Maribor, Slovenia

The University of Maribor is Slovenia's second university, established in 1975 in Maribor, Slovenia. It currently has 17 faculties. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

The invention relates to a method and apparatus for low temperature waste heat utilization. In the scope of the cogeneration unit (CHP) there are few low temperature sources, which cannot be used by heat consumer (HC) directly. Hence, the method and apparatus for cogeneration power plant waste heat recovery comprise at least one, preferably condensing type heat exchanger (HE2), which collects the waste heat for water source high temperature heat pump (HP) employment, wherein its hot water outlet is fed to the internal combustion engine (ICE) cooling system, i.e. cooling jacket type heat exchanger, wherein the maximum allowed coolant inlet temperature is achieved and maintained by automated control system (i.e. control unit with motorized control valves (V1-V3)). It is important to notice, that low temperature sources are herein represented by the exhaust gas in the scope of exhaust system, the charging air in the scope of the intercooler or turbo-supercharger, and lubrication oil cooling system in the scope of internal combustion engine (ICE) or heat pump (HP).


Patent
Jozef Stefan Institute and University of Maribor | Date: 2017-08-23

A method for growing carbon nanowalls on a substrate of an implantable medical device by means of a processing chamber is provided, said method comprising: providing said substrate in said processing chamber, evacuating said processing chamber to a processing pressure, entering a gas mixture inside the processing chamber, providing radicals inside said chamber and adsorbing said radicals on said substrate leading to growing of carbon nanowalls on said substrate.


Perc M.,University of Maribor
Physics Letters, Section A: General, Atomic and Solid State Physics | Year: 2016

If only the fittest survive, why should one cooperate? Why should one sacrifice personal benefits for the common good? Recent research indicates that a comprehensive answer to such questions requires that we look beyond the individual and focus on the collective behavior that emerges as a result of the interactions among individuals, groups, and societies. Although undoubtedly driven also by culture and cognition, human cooperation is just as well an emergent, collective phenomenon in a complex system. Nonequilibrium statistical physics, in particular the collective behavior of interacting particles near phase transitions, has already been recognized as very valuable for understanding counterintuitive evolutionary outcomes. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among humans often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. Here we briefly review research done in the realm of the public goods game, and we outline future research directions with an emphasis on merging the most recent advances in the social sciences with methods of nonequilibrium statistical physics. By having a firm theoretical grip on human cooperation, we can hope to engineer better social systems and develop more efficient policies for a sustainable and better future. © 2016 Elsevier B.V.


Perc M.,University of Maribor
Journal of the Royal Society Interface | Year: 2014

The Matthew effect describes the phenomenon that in societies, the rich tend to get richer and the potent even more powerful. It is closely related to the concept of preferential attachment in network science, where the more connected nodes are destined to acquire many more links in the future than the auxiliary nodes. Cumulative advantage and success-breads-success also both describe the fact that advantage tends to beget further advantage. The concept is behind the many power laws and scaling behaviour in empirical data, and it is at the heart of self-organization across social and natural sciences. Here, we review the methodology for measuring preferential attachment in empirical data, as well as the observations of the Matthew effect in patterns of scientific collaboration, socio-technical and biological networks, the propagation of citations, the emergence of scientific progress and impact, career longevity, the evolution of common English words and phrases, as well as in education and brain development. We also discuss whether the Matthew effect is due to chance or optimization, for example related to homophily in social systems or efficacy in technological systems, and we outline possible directions for future research. & 2014 The Authors. Published by the Royal Society.


Perc M.,University of Maribor
New Journal of Physics | Year: 2011

Previous research has highlighted the importance of strong heterogeneity for the successful evolution of cooperation in games governed by pairwise interactions. Here we determine to what extent this is true for games governed by group interactions. We therefore study the evolution of cooperation in the public goods game on the square lattice, the triangular lattice, and the random regular graph, whereby the payoffs are distributed either uniformly or exponentially amongst the players by assigning to them individual scaling factors that determine the share of the public good they will receive. We find that uniformly distributed public goods are more successful in maintaining high levels of cooperation than exponentially distributed public goods. This is not in agreement with previous results on games governed by pairwise interactions, indicating that group interactions may be less susceptible to the promotion of cooperation by means of strong heterogeneity than originally assumed, and that the role of strongly heterogeneous states should be reexamined for other types of games. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.


Perc M.,University of Maribor
Journal of the Royal Society, Interface / the Royal Society | Year: 2013

Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: WASTE-1-2014 | Award Amount: 11.43M | Year: 2015

The RESYNTEX project aims at designing, developing and demonstrating new high environmental impact industrial symbiosis between the unwearable blends and pure components of textile waste and the chemical and textile industries. The project comprises: - a strategic design of the whole value chain from textile waste collection, until the new marketable feedstock for chemical & textile industrie, by which the symbiosis opportunities are evaluated (by public authorities and the private sector) in terms of their social, technical, economic, environmental and legislative aspects - the improvement of collection approaches particularly for non-wearable textiles for recycling by changing citizens behaviour and creation of tools for higher social involvement and recycling promotion. This will ensure a greater accessibility to textile waste as resource and increase the textile waste rates destined for recycling. With 50% collection rate all over Europe would be a significant improvement in order to provide large quantities of feedstock - a data aggregation system that will be developed and implemented in order to ensure waste traceability and also provide relevant data for economic and environmental assessment; - the development of new business models adapted for different synergies identified and for new markets. In addition, environmental LCA and LCC for different scenarios and identification of the most promising routes and synergies will support this objective - automation of the macro separation and sorting for pure or blended textiles, in order to enhance productivity and competitiveness of the whole recycling process - a new demonstration process based on a synergistic chemical and biotechnological cascading separation/transformation approach of textile basic components (proteins, cellulose, polyamide and polyester) from textile blends as basic feedstock materials for chemical & textile industries. Liquid and solid waste treatment and valorisation will close the loop


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INT-10-2015 | Award Amount: 2.49M | Year: 2016

Southeast Europe has seen a century of continuous transformation and transition the disappearance and emergence of states, political and legal systems, ideologies, institutions, and social classes. This has been accompanied by a stability of social practices resistant to change. Shaken by radically changing ideological and legal structures, citizens rely on customary and informal social networks of kin, symbolic kin, and friends for meeting economic needs, and on clan- or kin-related structures rather than the rule of law for security and protection. We trace the persistence of informal practices to: 1) the external origin of major transformations, including the transitions to and from socialism; 2) the incomplete character of change, which has tended to be replaced by equally radical but diametrically opposed projects; 3) the development of a buffer culture based on informal practices, directed to enabling people to survive under unstable conditions; and 4) the widening gap between formal institutions and informal social practices. The distance between proclaimed goals and existing practices represents the key challenge to the European integration of Balkan societies. The integration process could end with superficial change, behind which the real social life of corruption, clientelism, tension, inequality, and exclusion will continue to unfold. We propose to explicate the key formal and informal rules of the game, and to identify and decipher the unwritten rules which underpin tactical maneuvering between formal and informal institutions, in various spheres and at various levels of social life. These would then be compared to the demands and recommendations laid out in the key EU documents outlining expectations from Southeast European states. The goal is to contribute to the formulation of policy recommendations which would aim not to eradicate informal practices, but to close the gap between formal and informal institutions in Balkan societies.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INSO-2-2014 | Award Amount: 3.10M | Year: 2015

Reaching the ambitions of the Europe 2020 and the Innovation Union requires much more than just technological innovations. In the academic community, Business Model Innovation (BMI) has for a long time been recognized as the key to improved competitiveness and innovativeness. However, BMI does not reach SMEs yet nor is there knowledge on how SMEs conduct BMI in practice. Empowering SMEs to conduct BMI requires new approaches. By leveraging existing networks and communities, we will gather examples, best practices and insights into Business Models (BM) from case studies from each and every European region or industry, complemented with insights from other leading countries worldwide. The BM vortex will thus generate an enormous and rich library of business models patterns and managerial structures, provided on a platform, to support SMEs in these communities. We will also develop innovative tooling and provide them on the platform to makes it easy for SMEs to develop, evaluate and plan new business models. The ENVISION consortium covers Northern, Western, Central, Eastern and Southern Europe. In each region a top-ranked academic institution in the field of BMI is present as well as innovative businesses that deliver smart and tailored BMI tooling and reach out to SMEs. We build on over a decade of joint work on BMI and BM tooling. We will build and maintain regional and thematic communities. In the communities, support is delivered to help SMEs transform and improve their BMs. The consortium also includes partners and associated partners that will realize our pan-European reach to SMEs: on a pan-European level (e.g., UAEPME and female entrepreneurs network), on a national and regional level (e.g., chambers of commerce, family business organizations and statistical offices). The consortium also has linkages to EIT/ICT Labs and the European Service Innovation Centre (ESIC).


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: FETOPEN-1-2014 | Award Amount: 2.46M | Year: 2015

The ageing society and demographic change is one of the major challenges which Europe is facing now, and even more so in the future. Mastering this challenge requires radically new diagnostic and therapeutic treatments as key factors in achieving the healthy well-being of European citizens. Molecular imaging (MI) plays a pivotal role in diagnosis, understanding of disease and in the development of effective treatments. CONQUER will explore a fundamentally new contrast mechanism with the potential to push magnetic resonance imaging (MRI) far beyond its limits towards a powerful MI modality. This will be achieved by exploiting the cross relaxation between 1H and large quadrupolar nuclei (QN) for contrast agent (CA) design. The main objective is to synthesize bio-compatible QN compounds and nano-particles (NPs), high efficiency and manifold degrees of freedom in the design of smart properties, such as the ability to switch the contrast on and off by changing the magnetic field or chemical binding (e.g. targeting). The NPs will be tailored based on quantum-mechanical simulations. Sensitivity and contrast switching will be demonstrated with MRI in cell cultures. This highly interdisciplinary project combines expertise in quantum physics, chemical and biomedical engineering, material characterisation as well as nanotoxicology. Today, European scientists and companies are already leading global players in CA development. CONQUER will significantly fertilise this field and lay the scientific foundations for a new technology by providing theoretical groundwork, synthesis guidelines, imaging instrumentation and toxicological references. These results will be actively transferred to academia and industry as well in order to strengthen European competitiveness. The combination of a so far unexploited quantum-mechanical phenomenon and cutting-edge imaging technologies has the potential to create MI solutions with significant impact.

Loading University of Maribor collaborators
Loading University of Maribor collaborators