Manchester, United Kingdom

University of Manchester
Manchester, United Kingdom

The University of Manchester is a large research university situated in the city of Manchester, England. Manchester University, as it is commonly known, is a public university formed in 2004 by the merger of the University of Manchester Institute of Science and Technology and the Victoria University of Manchester . Manchester is a member of the worldwide Universities Research Association group, the Russell Group of British research universities and the N8 Group. The University of Manchester is regarded as a "red brick university", and was a product of the civic university movement of the late 19th century. It formed a constituent part of the federal Victoria University between 1880, when it received its royal charter, and 1903-1904, when it was dissolved.The main campus is south of Manchester city centre on Oxford Road. In 2012, the university had around 39,000 students and 10,400 staff, making it the largest single-site university in the United Kingdom. The University of Manchester had an income of £827 million in 2012–13, of which £200 million was from research grants and contracts.In the 2008 Research Assessment Exercise, Manchester came third in terms of research power and eighth for grade point average quality when including specialist institutions. More students try to gain entry to the University of Manchester than to any other university in the country, with more than 60,000 applications for undergraduate courses. According to the 2012 Highfliers Report, Manchester is the most targeted university by the Top 100 Graduate Employers.The University of Manchester is ranked 30th in the world by QS World University Rankings. In the 2014 Academic Ranking of World Universities, Manchester is ranked 38th in the world and 5th in the UK. It is ranked 52nd in the world and 12th in Europe in the 2014 Times Higher Education World University Rankings.The university owns and operates major cultural assets such as the Manchester Museum, Whitworth Art Gallery, John Rylands Library and Jodrell Bank Observatory which includes the Grade I listed Lovell Telescope.The University of Manchester has 25 Nobel laureates among its past and present students and staff, the fourth-highest number of any single university in the United Kingdom. Four Nobel laureates are currently among its staff – more than any other British university. Wikipedia.

Time filter
Source Type

University of Manchester | Date: 2017-02-01

The present invention relates to a resist composition, especially for use in the production of electronic components via electron beam lithography. In addition to the usual base polymeric component (resist polymer), a secondary electron generator is included in resist compositions of the invention in order to promote secondary electron generation. This unique combination of components increases the exposure sensitivity of resists in a controlled fashion which facilitates the effective production of high-resolution patterned substrates (and consequential electronic components), but at much higher write speeds.

University of Manchester | Date: 2017-03-08

A seat locking mechanism for a vehicle comprises a plurality of locking elements (9-13) arranged to engage and lock with a mounting (4) provided on the floor of the vehicle. The locking elements (9-13) are each arranged to rotate between locked and unlocked positions and are engaged with one another, for example via partial gears, so that rotation of one locking element causes simultaneous rotation of all locking elements. Each locking element comprises a locking portion (21) that is arranged to engage the mounting (4) in the locked position thereby securing the seat to the vehicle.

University of Manchester | Date: 2017-02-15

This invention relates to barrier materials comprising reduced graphene oxide, methods of making said materials and their uses. The reduced graphene oxide is preferably formed from the reduction of graphene oxide by HI, HBr or ascorbic acid.

University of Manchester | Date: 2017-01-04

The present invention relates to an improved method of providing photoreceptor function to a cell, for example for use in the treatment of retinal degeneration. The present invention also relates to compositions and kits, in particular for use in such methods.

University of Manchester | Date: 2017-04-12

The present invention relates to peptides that are able to bind to anti-PLA2R antibodies. The peptides comprise the amino acid sequence K-X1-X2-X3-X4-X5-K-X6-X7-X8-X9-X10- X11-X12-X13-K (SEQ ID NO:2), in which both X1 and X13 may be cysteine residues. The peptides may have a length of up to 60 amino acid residues, or as little as 31 amino acid residues. The peptides are useful in the prevention or treatment of kidney disease, and methods of preventing or treating kidney disease by providing a therapeutically effective amount of a peptide to a subject, as well as devices for extra corporeal treatment of a patients blood, are all provided. The invention also provides methods of determining levels of anti-PLA2R antibodies in a subject, and pharmaceutical compositions comprising a peptide and a pharmaceutically acceptable carrier.

University of Manchester | Date: 2017-03-22

A plasmonic structure (10) comprising a layer of metal (14) in which the metal is selected from: a Group 8 to Group 11 transition metal, aluminium, germanium, antimony or bismuth, and a barrier layer (16) formed from a 2-D material disposed on a surface of the layer of metal (14). The metal layer has a roughness that permits the propagation of running plasmons along the interface of the metal layer and the barrier layer.

University of Manchester | Date: 2017-01-11

The present invention provides novel antimicrobial peptides and nucleic acids encoding them, the peptides having an inhibitory or bactericidal/bacteriostatic effect on both Gram- negative and Gram-positive bacteria. The invention includes methods of treating bacterial infections and preventing the spread of the infections or contamination by the infection. The peptides of the present invention are of particular use as therapeutics to treat Gram- negative infections and are of use in impregnation, covering or coating medical devices or implants or prosthetics prior to introduction into a patients body

Hussell T.,University of Manchester | Bell T.J.,University of Manchester
Nature Reviews Immunology | Year: 2014

Alveolar macrophages exist in a unique microenvironment and, despite historical evidence showing that they are in close contact with the respiratory epithelium, have until recently been investigated in isolation. The microenvironment of the airway lumen has a considerable influence on many aspects of alveolar macrophage phenotype, function and turnover. As the lungs adapt to environmental challenges, so too do alveolar macrophages adapt to accommodate the ever-changing needs of the tissue. In this Review, we discuss the unique characteristics of alveolar macrophages, the mechanisms that drive their adaptation and the direct and indirect influences of epithelial cells on them. We also highlight how airway luminal macrophages function as sentinels of a healthy state and how they do not respond in a pro-inflammatory manner to antigens that do not disrupt lung structure. The unique tissue location and function of alveolar macrophages distinguish them from other macrophage populations and suggest that it is important to classify macrophages according to the site that they occupy. © 2014 Macmillan Publishers Limited. All rights reserved.

Derby B.,University of Manchester
Science | Year: 2012

New manufacturing technologies under the banner of rapid prototyping enable the fabrication of structures close in architecture to biological tissue. In their simplest form, these technologies allow the manufacture of scaffolds upon which cells can grow for later implantation into the body. A more exciting prospect is the printing and patterning in three dimensions of all the components that make up a tissue (cells and matrix materials) to generate structures analogous to tissues; this has been termed bioprinting. Such techniques have opened new areas of research in tissue engineering and regenerative medicine.

Novoselov K.S.,University of Manchester
Reviews of Modern Physics | Year: 2011

Much like the world described in Abbott's Flatland, graphene is a two-dimensional object. And, as "Flatland" is "a romance of many dimensions," graphene is much more than just a flat crystal. It possesses a number of unusual properties which are often unique or superior to those in other materials. In this brief lecture I would like to explain the reason for my (and many other people's) fascination with this material, and invite the reader to share some of the excitement I've experienced while researching it. © 2011 American Physical Society.

Loading University of Manchester collaborators
Loading University of Manchester collaborators