University of Mainz Mainz

of Mainz, Germany

University of Mainz Mainz

of Mainz, Germany
Time filter
Source Type

Piazolo S.,Macquarie University | Wilson C.J.L.,Monash University | Luzin V.,Australian Nuclear Science and Technology Organisation | Brouzet C.,Ecole Normale Superieure de Lyon | Peternell M.,University of Mainz Mainz
Geochemistry, Geophysics, Geosystems | Year: 2013

Prediction of glacier and polar ice sheet dynamics is a major challenge, especially in view of changing climate. The flow behavior of an ice mass is fundamentally linked to processes at the grain and subgrain scale. However, our understanding of ice rheology and microstructure evolution based on conventional deformation experiments, where samples are analyzed before and after deformation, remains incomplete. To close this gap, we combine deformation experiments with in situ neutron diffraction textural and grain analysis that allows continuous monitoring of the evolution of rheology, texture, and microstructure. We prepared ice samples from deuterium water, as hydrogen in water ice has a high incoherent neutron scattering rendering it unsuitable for neutron diffraction analysis. We report experimental results from deformation of initially randomly oriented polycrystalline ice at three different constant strain rates. Results show a dynamic system where steady-state rheology is not necessarily coupled to microstructural and textural stability. Textures change from a weak single central c axis maxima to a strong girdle distribution at 35° to the compression axis attributed to dominance of basal slip followed by basal combined with pyramidal slip. Dislocation-related hardening accompanies this switch and is followed by weakening due to new grain nucleation and grain boundary migration. With decreasing strain rate, grain boundary migration becomes increasingly dominant and texture more pronounced. Our observations highlight the link between the dynamics of processes competition and rheological and textural behavior. This link needs to be taken into account to improve ice mass deformation modeling critical for climate change predictions. Key Points Technique combination allows monitoring of texture, rheology and structure Ice deforms as a highly dynamic system Deformation process competition governs ice deformation behaviour ©2013. American Geophysical Union. All Rights Reserved.

PubMed | Hannover Medical School, Albert Ludwigs University of Freiburg, University of Mainz Mainz, Paracelsus Medical University and 2 more.
Type: | Journal: Frontiers in psychology | Year: 2015

The aims of the present multi-center study were to investigate the extent of mental health problems in adolescents with a hearing loss and cochlear implants (CIs) in comparison to normal hearing (NH) peers and to investigate possible relations between the extent of mental health problems of young CI users and hearing variables, such as age at implantation, or functional gain of CI. The survey included 140 adolescents with CI (mean age = 14.7, SD = 1.5 years) and 140 NH adolescents (mean age = 14.8, SD = 1.4 years), their parents and teachers. Participants were matched by age, gender and social background. Within the CI group, 35 adolescents were identified as risk cases due to possible and manifest additional handicaps, and 11 adolescents were non-classifiable. Mental health problems were assessed with the Strengths and Difficulties Questionnaire (SDQ) in the versions Self, Parent, and Teacher. The CI group showed significantly more Peer Problems than the NH group. When the CI group was split into a risk-group (35 risk cases and 11 non-classifiable persons) and a non-risk group (n = 94), increased peer problems were perceived in both CI subgroups by adolescents themselves. However, no further differences between the CI non-risk group and the NH group were observed in any rater. The CI risk-group showed significantly more hyperactivity compared to the NH group and more hyperactivity and conduct problems compared to the CI non-risk group. Cluster analyses confirmed that there were significantly more adolescents with high problems in the CI risk-group compared to the CI non-risk group and the NH group. Adolescents with CI, who were able to understand speech in noise had significantly less difficulties compared to constricted CI users. Parents, teachers, and clinicians should be aware that CI users with additionally special needs may have mental health problems. However, peer problems were also experienced by CI adolescents without additional handicaps.

PubMed | Robert Bosch GmbH, University of Mainz Mainz, University of Mannheim, Ruhr University Bochum and 3 more.
Type: Journal Article | Journal: Annals of clinical and translational neurology | Year: 2015

The capacity of thymomas to generate mature CD4+ effector T cells from immature precursors inside the tumor and export them to the blood is associated with thymoma-associated myasthenia gravis (TAMG). Why TAMG(+) thymomas generate and export more mature CD4+ T cells than MG(-) thymomas is unknown.Unfixed thymoma tissue, thymocytes derived thereof, peripheral blood mononuclear cells (PBMCs), T-cell subsets and B cells were analysed using qRT-PCR and western blotting. Survival of PBMCs was measured by MTT assay. FAS-mediated apoptosis in PBMCs was quantified by flow cytometry. NF-B in PBMCs was inhibited by the NF-B-Inhibitor, EF24 prior to FAS-Ligand (FASLG) treatment for apoptosis induction.Expression levels of the apoptosis inhibitor cellular FLICE-like inhibitory protein (c-FLIP) in blood T cells and intratumorous thymocytes were higher in TAMG(+) than in MG(-) thymomas and non-neoplastic thymic remnants. Thymocytes and PBMCs of TAMG patients showed nuclear NF-B accumulation and apoptosis resistance to FASLG stimulation that was sensitive to NF-B blockade. Thymoma removal reduced cFLIP expression in PBMCs.We conclude that thymomas induce cFLIP overexpression in thymocytes and their progeny, blood T cells. We suggest that the stronger cFLIP overexpression in TAMG(+) compared to MG(-) thymomas allows for the more efficient generation of mature CD4+ T cells in TAMG(+) thymomas. cFLIP overexpression in thymocytes and exported CD4+ T cells of patients with TAMG might contribute to the pathogenesis of TAMG by impairing central and peripheral T-cell tolerance.

PubMed | University of Mainz Mainz
Type: | Journal: Frontiers in behavioral neuroscience | Year: 2016

Current research demonstrates increased learning rates in differential learning (DL) compared to repetitive training. To date, little is known on the underlying neurophysiological processes in DL that contribute to superior performance over repetitive practice. In the present study, we measured electroencephalographic (EEG) brain activation patterns after DL and repetitive badminton serve training. Twenty-four semi-professional badminton players performed badminton serves in a DL and repetitive training schedule in a within-subjects design. EEG activity was recorded from 19 electrodes according to the 10-20 system before and immediately after each 20-min exercise. Increased theta activity was obtained in contralateral parieto-occipital regions after DL. Further, increased posterior alpha activity was obtained in DL compared to repetitive training. Results indicate different underlying neuronal processes in DL and repetitive training with a higher involvement of parieto-occipital areas in DL. We argue that DL facilitates early consolidation in motor learning indicated by post-training increases in theta and alpha activity. Further, brain activation patterns indicate somatosensory working memory processes where attentional resources are allocated in processing of somatosensory information in DL. Reinforcing a somatosensory memory trace might explain increased motor learning rates in DL. Finally, this memory trace is more stable against interference from internal and external disturbances that afford executively controlled processing such as attentional processes.

PubMed | University of Tübingen, University of Mainz Mainz and German Center for Neurodegenerative Diseases
Type: Journal Article | Journal: Molecular genetics & genomic medicine | Year: 2014

Hereditary spastic paraplegias (HSP) constitute a rare and highly heterogeneous group of neurodegenerative disorders, defined clinically by progressive lower limb spasticity and pyramidal weakness. Autosomal recessive HSP as well as sporadic cases present a significant diagnostic challenge. Mutations in AP5Z1, a gene playing a role in intracellular membrane trafficking, have been recently reported to be associated with spastic paraplegia type 48 (SPG48). Our objective was to determine the relative frequency and clinical relevance of AP5Z1 mutations in a large cohort of 127 HSP patients. We applied a targeted next-generation sequencing approach to analyze all coding exons of the AP5Z1 gene. With the output of high-quality reads and a mean coverage of 51-fold, we demonstrated a robust detection of variants. One 43-year-old female with sporadic complicated paraplegia showed two heterozygous nonsynonymous variants of unknown significance (VUS3; p.[R292W];[(T756I)]). Thus, AP5Z1 gene mutations are rare, at least in Europeans. Due to its low frequency, systematic genetic testing for AP5Z1 mutations is not recommended until larger studies are performed to add further evidence. Our findings demonstrate that amplicon-based deep sequencing is technically feasible and allows a compact molecular characterization of multiple HSP patients with high accuracy.

Loading University of Mainz Mainz collaborators
Loading University of Mainz Mainz collaborators