Entity

Time filter

Source Type

Orono, ME, United States

The University of Maine is a public research university located in Orono, Maine, United States. The university was established in 1865 as a land grant college and is referred to as the flagship university of the University of Maine System. Having an enrollment of over 11,000 students, UMaine is the largest university in the state and is the only institution in Maine classified as a research university by the Carnegie Classification of Institutions of Higher Education. The University of Maine's athletic teams are nicknamed the Black Bears, and sport blue and white uniforms. Wikipedia.


Active enzymes diffuse more rapidly than inactive enzymes. This phenomenon may be due to catalysis-driven conformational changes that result in "swimming" through the aqueous solution. Recent additional work has demonstrated that active enzymes can undergo chemotaxis toward regions of high substrate concentration, whereas inactive enzymes do not, and, further, that active enzymes immobilized at surfaces can directionally pump liquids. In this Perspective, I will discuss these phenomena in light of Purcells work on directed motion at low Reynolds number and in the context of microscopic reversibility. The conclusions suggest that a deep understanding of catalytically driven enhanced diffusion of enzymes and related phenomena can lead toward a general organizing principle for the design, characterization, and operation of molecular machines. © 2014 American Chemical Society. Source


Borkum J.M.,University of Maine, United States
Headache | Year: 2016

Background Blau theorized that migraine triggers are exposures that in higher amounts would damage the brain. The recent discovery that the TRPA1 ion channel transduces oxidative stress and triggers neurogenic inflammation suggests that oxidative stress may be the common denominator underlying migraine triggers. Objective The aim of this review is to present and discuss the available literature on the capacity of common migraine triggers to generate oxidative stress in the brain. Methods A Medline search was conducted crossing the terms "oxidative stress" and "brain" with "alcohol," "dehydration," "water deprivation," "monosodium glutamate," "aspartame," "tyramine," "phenylethylamine," "dietary nitrates," "nitrosamines," "noise," "weather," "air pollutants," "hypoglycemia," "hypoxia," "infection," "estrogen," "circadian," "sleep deprivation," "information processing," "psychosocial stress," or "nitroglycerin and tolerance." "Flavonoids" was crossed with "prooxidant." The reference lists of the resulting articles were examined for further relevant studies. The focus was on empirical studies, in vitro and of animals, of individual triggers, indicating whether and/or by what mechanism they can generate oxidative stress. Results In all cases except pericranial pain, common migraine triggers are capable of generating oxidative stress. Depending on the trigger, mechanisms include a high rate of energy production by the mitochondria, toxicity or altered membrane properties of the mitochondria, calcium overload and excitotoxicity, neuroinflammation and activation of microglia, and activation of neuronal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. For some triggers, oxidants also arise as a byproduct of monoamine oxidase or cytochrome P450 processing, or from uncoupling of nitric oxide synthase. Conclusions Oxidative stress is a plausible unifying principle behind the types of migraine triggers encountered in clinical practice. The possible implications for prevention and for understanding the nature of the migraine attack are discussed. © 2015 American Headache Society. Source


Ruthven D.M.,University of Maine, United States
Microporous and Mesoporous Materials | Year: 2012

The extensive kinetic data accumulated, over many years, from a series of experimental studies of the kinetics of adsorption/desorption of a wide range of different sorbates in type A zeolites are reviewed and analyzed in an attempt to develop a coherent understanding of the behavior of these systems. Kinetic data for large laboratory synthesized crystals and small commercial crystals, measured under similar conditions, have been studied in detail. In well dehydrated crystals the sorption rates are generally controlled by intracrystalline diffusion but exposure to traces of water leads to the development of surface resistance and a pronounced reduction in the sorption rate. Zeolite samples of different origin show widely different sorption rates but the diffusional activation energies (for a given sorbate) are essentially constant. The differences between the different samples appear to be due mainly to differences in the cation distribution caused by differences in the initial dehydration procedure. The ideal cation distribution (in 5A) in which all window sites are unoccupied is realized only in very carefully dehydrated samples in which the water was removed slowly at gradually increasing temperature under a high vacuum. In the small commercial 5A crystals many of the windows are blocked, even though all the cations could theoretically be accommodated in the 6-ring sites. This is probably due to cation hydration reactions which are likely to occur when the dehydration conditions are not carefully controlled. © 2012 Elsevier Inc. All rights reserved. Source


Ashworth S.,University of Maine, United States
PloS one | Year: 2010

Podocytes are highly specialized epithelial cells on the visceral side of the glomerulus. Their interdigitating primary and secondary foot processes contain an actin based contractile apparatus that can adjust to changes in the glomerular perfusion pressure. Thus, the dynamic regulation of actin bundles in the foot processes is critical for maintenance of a well functioning glomerular filtration barrier. Since the actin binding protein, cofilin-1, plays a significant role in the regulation of actin dynamics, we examined its role in podocytes to determine the impact of cofilin-1 dysfunction on glomerular filtration. We evaluated zebrafish pronephros function by dextran clearance and structure by TEM in cofilin-1 morphant and mutant zebrafish and we found that cofilin-1 deficiency led to foot process effacement and proteinuria. In vitro studies in murine and human podocytes revealed that PMA stimulation induced activation of cofilin-1, whereas treatment with TGF-β resulted in cofilin-1 inactivation. Silencing of cofilin-1 led to an accumulation of F-actin fibers and significantly decreased podocyte migration ability. When we analyzed normal and diseased murine and human glomerular tissues to determine cofilin-1 localization and activity in podocytes, we found that in normal kidney tissues unphosphorylated, active cofilin-1 was distributed throughout the cell. However, in glomerular diseases that affect podocytes, cofilin-1 was inactivated by phosphorylation and observed in the nucleus. Based on these in vitro and in vivo studies we concluded cofilin-1 is an essential regulator for actin filament recycling that is required for the dynamic nature of podocyte foot processes. Therefore, we describe a novel pathomechanism of proteinuria development. Source


A simple model for a chemically driven molecular walker shows that the elastic energy stored by the molecule and released during the conformational change known as the power-stroke (i.e., the free-energy difference between the pre- and post-power-stroke states) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Further, the apportionment of the dependence on the externally applied force between the forward and reverse rate constants of the power-stroke (or indeed among all rate constants) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Arguments based on the principle of microscopic reversibility demonstrate that this result is general for all chemically driven molecular machines, and even more broadly that the relative energies of the states of the motor have no role in determining the directionality, stopping force, or optimal efficiency of the machine. Instead, the directionality, stopping force, and optimal efficiency are determined solely by the relative heights of the energy barriers between the states. Molecular recognition - the ability of a molecular machine to discriminate between substrate and product depending on the state of the machine - is far more important for determining the intrinsic directionality and thermodynamics of chemo-mechanical coupling than are the details of the internal mechanical conformational motions of the machine. In contrast to the conclusions for chemical driving, a power-stroke is very important for the directionality and efficiency of light-driven molecular machines and for molecular machines driven by external modulation of thermodynamic parameters. © 2015 Biophysical Society. Source

Discover hidden collaborations