Lincoln, United Kingdom

University of Lincoln

www.lincoln.ac.uk/
Lincoln, United Kingdom

The University of Lincoln is a public research university in the city of Lincoln, England. The university has origins tracing back to 1861, and after gaining university status in 1992, was known as the University of Humberside until 1996 and the University of Lincolnshire and Humberside until 2001, when it adopted its present name.Lincoln is one of two universities in the city, alongside Bishop Grosseteste University. Lincoln's main campus is adjacent to Brayford Pool, the site of urban regeneration in the city since the 1990s; further campuses are located in Riseholme and Holbeach.The Independent described the university as "the best thing to happen to Lincoln since the Romans". Lincoln has rapidly moved up in the university rankings, having risen 60 places in 4 years. The Sunday Times newspaper, responsible for The Times Good University Guide, has described the university's progression as "the most dramatic transformation of a university in recent times." In 2012, the university ranked in the top 50 of The Guardian University Guide for the first time.It is the University of Lincoln's annual tradition for student graduation ceremonies to take place at the medieval Lincoln Cathedral. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
University of Lincoln | Date: 2017-04-12

Some embodiments of the present invention provide apparatus having a particle beamline for passage of charged particles of radiation therealong, comprising: a first beam tracker structure comprising at least one position sensitive detector (PSD) for determining a location with respect to a cross-sectional area of the beam line at which particles pass through the PSD; energy discrimination apparatus for determining an energy of particles that have passed through the first beam tracker structure; and support means for supporting a subject in a path of a particle along the beamline between the first beam tracker structure and the energy discrimination apparatus, the apparatus being configured to be operated in a selected one of a first mode and a second mode, the apparatus being configured, in the first mode of operation, to control an energy of the beam of charged particles passing through the first beam tracker structure such that a Bragg peak of charged particle absorption is located within the subject, and in the second mode of operation, to control an energy of the beam of charged particles passing through the first beam tracker structure such that a Bragg peak of charged particle absorption is located within the energy discrimination apparatus.


Patent
Singh and University of Lincoln | Date: 2017-07-26

The invention provides a combination of an antibacterial agent (in particular vancomycin or moenomycin) and a delivery agent, in which the delivery agent is bonded, or capable of binding, to the antibacterial agent, and in which the delivery agent is capable of binding to one or more structures on a bacterial cell membrane. The invention further provides the use of such combinations in treating or preventing bacterial infections.


Patent
University of Lincoln | Date: 2017-04-12

Some embodiments of the present invention provide apparatus for detecting particles of radiation comprising: a plurality of solid state semiconductor detector devices provided at spaced apart locations along a beam axis, the detector devices each being configured to generate an electrical signal indicative of passage of a particle through or absorption of a particle by the device; and at least one absorber portion configured to absorb at least a portion of an energy of a particle, wherein one said at least one absorber portion is provided in a particle path between at least one pair of adjacent detector devices, the apparatus being configured to provide an output signal indicative of the energy of a particle, the output signal provided being dependent on the electrical signals indicative of passage of a particle through or absorption of a particle by the devices.


Patent
University of Lincoln | Date: 2017-04-12

Some embodiments of the present invention provide a 2D position-sensitive detector assembly comprising at least three substantially planar detector portions arranged in overlapping relationship as viewed normal to a plane of the detector portions, each detector portion comprising an array of substantially parallel, linear detector elements, the detector elements of respective detector portions being mutually non-parallel, the detector elements each being configured to generate one or more electrical signals in response to interaction of a particle of radiation therewith.


Patent
University of Lincoln | Date: 2015-06-09

Some embodiments of the present invention provide a 2D position-sensitive detector assembly comprising at least three substantially planar detector portions arranged in overlapping relationship as viewed normal to a plane of the detector portions, each detector portion comprising an array of substantially parallel, linear detector elements, the detector elements of respective detector portions being mutually non-parallel, the detector elements each being configured to generate one or more electrical signals in response to interaction of a particle of radiation therewith.


Patent
University of Lincoln | Date: 2015-06-09

Some embodiments of the present invention provide apparatus having a particle beamline for passage of charged particles of radiation therealong, comprising: a first beam tracker structure comprising at least one position sensitive detector (PSD) for determining a location with respect to a cross-sectional area of the beam line at which particles pass through the PSD; energy discrimination apparatus for determining an energy of particles that have passed through the first beam tracker structure; and support means for supporting a subject in a path of a particle along the beamline between the first beam tracker structure and the energy discrimination apparatus, the apparatus being configured to be operated in a selected one of a first mode and a second mode, the apparatus being configured, in the first mode of operation, to control an energy of the beam of charged particles passing through the first beam tracker structure such that a Bragg peak of charged particle absorption is located within the subject, and in the second mode of operation, to control an energy of the beam of charged particles passing through the first beam tracker structure such that a Bragg peak of charged particle absorption is located within the energy discrimination apparatus.


Patent
University of Lincoln | Date: 2017-06-07

A method of reconstructing a3-dimensionalimage in a proton transmission computerised tomography (CT) apparatus is disclosed. The method comprises the creation of a reconstruction matrix. The matrix is created by directing a plurality of particles to traverse the object; and for each particle, measuring the trajectory and energy of each particle before and after it has traversed the object; for each particle, calculating the water-equivalent path length within the object; and for each particle, calculating the positions at which it entered and exited the object; and adding the water-equivalent path length, entry and exit positions to the reconstruction matrix. This procedure is repeated from a plurality of angular positions surrounding an object to be imaged. Then, a spatially varying 2- dimensional filter function is applied to the reconstruction matrix. Subsequently, a correction factor is applied to the filtered reconstruction matrix to at least partially correct for the finite extent of the matrix.


Patent
University of Lincoln | Date: 2015-06-09

Some embodiments of the present invention provide apparatus for detecting particles of radiation comprising: a plurality of solid state semiconductor detector devices provided at spaced apart locations along a beam axis, the detector devices each being configured to generate an electrical signal indicative of passage of a particle through or absorption of a particle by the device; and at least one absorber portion configured to absorb at least a portion of an energy of a particle, wherein one said at least one absorber portion is provided in a particle path between at least one pair of adjacent detector devices, the apparatus being configured to provide an output signal indicative of the energy of a particle, the output signal provided being dependent on the electrical signals indicative of passage of a particle through or absorption of a particle by the devices.


Cutsuridis V.,University of Lincoln
Philosophical Transactions of the Royal Society B: Biological Sciences | Year: 2017

Response inhibition is the ability to override a planned or an already initiated response. It is the hallmark of executive control as its deficits favour impulsive behaviours, which may be detrimental to an individual’s life. This article reviews behavioural and computational guises of response inhibition. It focuses only on inhibition of oculomotor responses. It first reviews behavioural paradigms of response inhibition in eye movement research, namely the countermanding and antisaccade paradigms, both proven to be useful tools for the study of response inhibition in cognitive neuroscience and psychopathology. Then, it briefly reviews the neural mechanisms of response inhibition in these two behavioural paradigms. Computational models that embody a hypothesis and/or a theory of mechanisms underlying performance in both behavioural paradigms as well as provide a critical analysis of strengths and weaknesses of these models are discussed. All models assume the race of decision processes. The decision process in each paradigm that wins the race depends on different mechanisms. It has been shown that response latency is a stochastic process and has been proven to be an important measure of the cognitive control processes involved in response stopping in healthy and patient groups. Then, the inhibitory deficits in different brain diseases are reviewed, including schizophrenia and obsessive-compulsive disorder. Finally, new directions are suggested to improve the performance of models of response inhibition by drawing inspiration from successes of models in other domains. © 2017 The Author(s) Published by the Royal Society. All rights reserved.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-26-2016 | Award Amount: 6.99M | Year: 2017

Today, intralogistic services have to respond quickly to changing market needs, unforeseeable trends and shorter product life cycles. These drivers pose new demands on intralogistic systems to be highly flexible, rock-solid reliable, self-optimising, quickly deployable and safe yet efficient in environments shared with humans. ILIAD will enable the transition to automation of intralogistic services with key stakeholders from the food distribution sector, where these challenges are particularly pressing. We will develop robotic solutions that can integrate with current warehouse facilities, extending the state of the art to achieve self-deploying fleets of heterogeneous robots in multiple-actor systems; life-long self-optimisation; manipulation from a mobile platform; efficient and safe operation in environments shared with humans; and efficient fleet management with formal guarantees. Scientifically, ILIAD pursues ambitious goals for complex cognitive systems in human environments beyond a specific use-case. We will overcome limitations in the state of the art in tracking and analysing humans; quantifying map quality and predicting future states depending on activity patterns inferred from long-term observations; planning of socially normative movements using learned human models; integration of task allocation, coordination and motion planning for heterogeneous robot fleets; and systematically studying human safety in mixed environments, providing a foundation for future safety standards. Our consortium is uniquely placed to tackle these challenges and to maximise exploitation beyond the projects duration. It includes partners with a proven track record in all key research areas, leading technology providers for intralogistics, end users that are leading in their respective markets, and the National Centre for Food Manufacturing at partner UoL, facilitating access to realistic test sites. This mix of partners will ensure a very high impact of the project results.

Loading University of Lincoln collaborators
Loading University of Lincoln collaborators