Leipzig, Germany

University of Leipzig

www.uni-leipzig.de
Leipzig, Germany

Leipzig University , located in Leipzig in the Free State of Saxony, Germany, is one of the oldest universities in the world and the second-oldest university in Germany. Famous alumni include Leibniz, Goethe, Ranke, Nietzsche, Wagner, Angela Merkel, Raila Odinga, Tycho Brahe and nine Nobel laureates are associated with this university.The university was founded on December 2, 1409 by Frederick I, Elector of Saxony and his brother William II, Margrave of Meissen, and originally comprised the four scholastic faculties. Since its inception the university has engaged in teaching and research for over 600 years without interruption. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

The invention relates to a method for the Raman spectroscopic, in ovo sex determination of fertilised and hatched birds eggs (1), wherein the embryo, including the extra-embryonic structures, can move in the egg, and is not yet attached to the shell at the time of measuring. In addition, the following steps are carried out: monitoring the time course of the hatched egg until forming at least one recognisable blood vessel (21); creating a hole (2) in the shell in the region near to the attached bloody vessel, using a hole-generating unit; finding the blood vessel forming in the egg, using a vision system (19, 13) and a coaxial or lateral illumination with light (10a) in the visible wavelength range; positioning at least one blood vessel in the laser focus of a laser source (3), either by moving the egg or moving a lens (6) of a device (5) for introducing the laser light (3a), and detecting the Raman scattered radiation (7); registering the Raman scattered radiation of the irradiated blood vessel using the device for introducing the laser light, and for detecting the Raman scattered radiation, wherein, during the measuring process, a movement of the blood vessel out of the focus can be avoided by tracking using the vision system; evaluating the Raman scattered radiation in an evaluation unit; determining and displaying the sex of the embryo in the birds egg.


Patent
University of Leipzig | Date: 2016-07-11

The invention relates to modified antibiotic peptides, in particular derivatives of apidaecin and oncocin, preferably having increased stability, reduced immunoreaction, and improved pharmacokinetics. In the invention, the peptide antibiotics are reversibly protected by means of a linker having the polymer polyethylene glycol (PEG). The peptide linker contains a recognition sequence for trypsin-like serum proteases. In the apidaecin derivatives, the linker and the PEG are bonded to a side chain. In the serum, the linker is cut by serum proteases and PEG is separated off. The released peptide still contains remnants of the linker, which are still bonded to the amino group in the side chain. Astonishingly, said remaining remnants of the linker impair the activity of the antimicrobial peptide only a little or not at all.


Patent
University of Leipzig | Date: 2016-12-23

This invention relates to modified antibiotic peptides, particularly for use in medicine. The invention further relates to composite and methods for destroying microorganisms, such as bacteria, viruses or fungi, and to methods for treating microbial infections. The object of the invention is to develop novel antibiotic peptides, particularly having enhanced antibiotic activity and an expanded spectrum of activity against other strains of bacteria, particularly gram-positive bacteria such as Staphylococcus aureus. According to the invention, the object is attained in a first aspect by a peptide according to claim 1.


Chronic aortic aneurysms are permanent and localized dilations of the aorta that remain asymptomatic for long periods of time but continue to increase in diameter before they eventually rupture. Left untreated, the patients prognosis is dismal, since the internal bleeding of the rupture brings about sudden death. Although successful treatment cures the disease, the risky procedures can result in paraplegia from spinal cord ischaemia or even death, particularly for aneurysms extending from the thoracic to the abdominal aorta and thus involving many segmental arteries to the spinal cord, i.e. thoracoabdominal aortic aneurysms of Crawford type II. Although various strategies have achieved a remarkable decrease in the incidence of paraplegia, it is still no less than 10 to 20%. However, it has been found that the deliberate occlusion of the segmental arteries to the paraspinous collateral network finally supplying the spinal cord does not increase rates of permanent paraplegia. A therapeutic option, minimally invasive segmental artery coil embolization has been devised which proceeds in a staged way to occlude groups of arteries under highly controlled conditions after which time must be allowed for arteriogenesis to build a robust collateral blood supply. PAPA-ARTiS is a phase II trial to demonstrate that a staged treatment approach can reduce paraplegia and mortality dramatically. It can be expected to have both a dramatic impact on the individual patients quality of life if saved from a wheelchair, and also upon financial systems through savings in; 1) lower costs in EU health care; 2) lower pay-outs in disability insurance (est. at 500k in Year 1), and; 3) loss of economic output from unemployment. Approx. 2500 patients a year in Europe undergo these high risk operations with a cumulative paraplegia rate of over 15%; therefore >100M per year in costs can be avoided and significantly more considering the expected elimination of type II endoleaks.


Krugel U.,University of Leipzig
Neuropharmacology | Year: 2016

Psychiatric disorders describe different mental or behavioral patterns, causing suffering or poor coping of ordinary life with manifold presentations. Multifactorial processes can contribute to their development and progression. Purinergic neurotransmission and neuromodulation in the brain have attracted increasing therapeutic interest in the field of psychiatry. Purine nucleotides and nucleosides are well recognized as signaling molecules mediating cell to cell communication. The actions of ATP are mediated by ionotropic P2X and metabotropic P2Y receptor subfamilies, whilst the actions of adenosine are mediated by P1 (A1 or A2) adenosine receptors. Purinergic mechanisms and specific receptor subtypes have been shown to be linked to the regulation of many aspects of behavior and mood and to dysregulation in pathological processes of brain function. In this review the recent knowledge on the role of purinergic receptors in the two most frequent psychiatric diseases, major depression and schizophrenia, as well as on related animal models is summarized. At present the most promising data for therapeutic strategies derive from investigations of the adenosine system emphasizing a unique function of A2A receptors at neurons and astrocytes in these disorders. Among the P2 receptor family, in particular P2X7 and P2Y1 receptors were related to disturbances in major depression and schizophrenia, respectively. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. © 2015 Elsevier Ltd.


Hegerl U.,University of Leipzig
Neuroscience and biobehavioral reviews | Year: 2013

Depressive disorders as well as fatal and non-fatal suicidal behaviour continue to be important mental health issues. Because of the close relation between depression and suicidal behaviour, it is likely that preventive actions improving care and optimising treatment for depressed patients result in a reduction of suicidal acts. This was shown in the Nuremberg Alliance against Depression, a two-year four-level community based intervention program associated with a 24% reduction of suicidal acts (completed and attempted suicides combined) compared to a baseline year and a control region. Serving as a model project, this approach has up to now been adopted in more than 100 regions in Germany and Europe. Within the suicide prevention project OSPI-Europe, the four-level-approach was optimized and further implemented and evaluated in different European regions. Copyright © 2013 Elsevier Ltd. All rights reserved.


Arendt T.,University of Leipzig
Molecular Neurobiology | Year: 2012

Alzheimer's disease (AD) is a chronic neurodegenerative disorder, characterized by synaptic degeneration associated with fibrillar aggregates of the amyloid-ß peptide and the microtubule-associated protein tau. The progression of neurofibrillary degeneration throughout the brain during AD follows a predictive pattern which provides the basis for the neuropathological staging of the disease. This pattern of selective neuronal vulnerability against neurofibrillary degeneration matches the regional degree of neuronal plasticity and inversely recapitulates ontogenetic and phylogenetic brain development which links neurodegenerative cell death to neuroplasticity and brain development. Here, we summarize recent evidence for a loss of neuronal differentiation control as a critical pathogenetic event in AD, associated with a reactivation of the cell cycle and a partial or full replication of DNA giving rise to neurons with a content of DNA above the diploid level. Neurons with an aneuploid set of chromosomes are also present at a low frequency in the normal brain where they appear to be well tolerated. In AD, however, where the number of aneuploid neurons is highly increased, a rather selective cell death of neurons with this chromosomal aberrancy occurs. This finding add aneuploidy to the list of critical molecular events that are shared between neurodegeneration and oncogenesis. It defines a molecular signature for neuronal vulnerability and directs our attention to a failure of neuronal differentiation control as a critical pathogenetic event and potential therapeutic target in AD. © Springer Science+Business Media, LLC 2012.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: FETPROACT-01-2016 | Award Amount: 5.82M | Year: 2017

Social media and the digitization of news and discussion fora are having far-reaching effects on the way individuals and communities communicate, organize, and express themselves. Can the information circulating on these platforms be tapped to better understand and analyze the enormous problems facing our contemporary society? Could this help us to better monitor the growing number of social crises due to cultural differences and diverging world-views? Would this facilitate early detection and perhaps even ways to resolve conflicts before they lead to violence? The Odycceus project answers all these questions affirmatively. It will develop the conceptual foundations, methodologies, and tools to translate this bold vision into reality and demonstrate its power in a large number of cases. Specifically, the project seeks conceptual breakthroughs in Global Systems Science, including a fine-grained representation of cultural conflicts based on conceptual spaces and sophisticated text analysis, extensions of game theory to handle games with both divergent interests and divergent mindsets, and new models of alignment and polarization dynamics. The project will also develop an open modular platform, called Penelope, that integrates tools for the complete pipeline, from data scraped from social media and digital sources, to visualization of the analyses and models developed by the project. The platform features an infrastructure allowing developers to provide new plug-ins for additional steps in the pipeline, share them with others, and jointly develop the platform as an open source community. Finally, the project will build two innovative participatory tools, the Opinion Observatory and the Opinion Facilitator, which allow citizens to monitor, visualize and influence the dynamics of conflict situations that involve heterogeneous cultural biases and non-transparent entanglements of multilateral interests.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC1-PM-09-2016 | Award Amount: 4.95M | Year: 2017

TYPE 1 DIABETES is one of the most COMMON CHRONIC diseases in children with a RAPID increase in number of cases particularly in young children. Type 1 diabetes is associated with LIFE-LONG dependency on insulin administration. POOR glucose control leads to diabetes COMPLICATIONS, e.g. eye, heart, kidney disease, including BRAIN changes in young children. Episodes of VERY LOW glucose levels may be life threatening and are a major complication. The ARTIFICIAL PANCREAS addresses the problem of LOW and HIGH glucose levels by delivering insulin BELOW and ABOVE pre-set amounts according to real-time sensor GLUCOSE levels, combining glucose SENSOR, insulin PUMP, and CONTROL ALGORITHM. The Artificial pancreas promises to TRANSFORM management of type 1 diabetes but EVIDENCE supporting its use during FREE LIVING in YOUNG CHILDREN is MISSING. The project evaluates the biomedical, psychosocial, and cost effectiveness of NOVEL INDIVIDUALISED artificial pancreas in young children aged 1 to 7 years with type 1 diabetes. Following a PILOT (n=24), in the MAIN study (n=94) half of the participants (n=47) will be treated over 12 MONTHS by the ARTIFICIAL PANCREAS and the other half (n=47) by STATE-OF-THE-ART PREDICTIVE LOW GLUCOSE MANAGEMENT insulin pump therapy. Each treatment will last ONE YEAR. QUALITY OF LIFE will be assessed and semi-structured INTERVIEWS conducted to understand the impact on daily life. HEALTH TECHNOLOGY ASSESSMENT will support reimbursement. The project will OPTIMISE artificial pancreas and SPEARHEAD SYSTEM-WIDE improvements in health care quality and health outcomes in YOUNG CHILDERN with TYPE 1 DIABETES who live with the disease LONGEST. By IMPROVING THERAPEUTIC OUTCOMES, the project will CHANGE clinical practice and INFLUENCE national and international treatment guidelines making the artificial pancreas WIDELY ACCEPTABLE as the state-of-art treatment modality in young children.


Mierke C.T.,University of Leipzig
Reports on Progress in Physics | Year: 2014

The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in particular the understanding of mechano-coupling and mechano-regulating functions in cell invasion, appears as an important step in cancer progression and inflammatory response to injuries. This may lead to novel insights into cancer disease and inflammatory diseases and will overcome classical views on cancer and inflammation. In addition, this review will discuss how the physics of cancer and inflammation can help to reveal whether cancer cells will invade connective tissue and metastasize or how leukocytes extravasate and migrate through the tissue. In this review, the physical concepts of cancer progression, including the tissue basement membrane a cancer cell is crossing, its invasion and transendothelial migration as well as the basic physical concepts of inflammatory processes and the cellular responses to the mechanical stress of the microenvironment such as external forces and matrix stiffness, are presented and discussed. In conclusion, this review will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches. © 2014 IOP Publishing Ltd.

Loading University of Leipzig collaborators
Loading University of Leipzig collaborators