Time filter

Source Type

Stuttgart, Germany

The University of Hohenheim is a campus university located in the south of Stuttgart, Germany. Founded in 1818 it is Stuttgart's oldest university. Its primary areas of specialisation had traditionally been agricultural and natural science, Today, however, the majority of its students are enrolled in one of the many study programs offered by the faculty of business, economics and social science. The faculty has regularly been ranked among the best in the country, making the University of Hohenheim one of Germany's top-tier universities in these fields. The university maintains academic alliances with a number of partner universities and is involved in numerous joint research projects. Wikipedia.

Bischoff S.C.,University of Hohenheim
BMC Medicine | Year: 2011

'Gut health' is a term increasingly used in the medical literature and by the food industry. It covers multiple positive aspects of the gastrointestinal (GI) tract, such as the effective digestion and absorption of food, the absence of GI illness, normal and stable intestinal microbiota, effective immune status and a state of well-being. From a scientific point of view, however, it is still extremely unclear exactly what gut health is, how it can be defined and how it can be measured. The GI barrier adjacent to the GI microbiota appears to be the key to understanding the complex mechanisms that maintain gut health. Any impairment of the GI barrier can increase the risk of developing infectious, inflammatory and functional GI diseases, as well as extraintestinal diseases such as immune-mediated and metabolic disorders. Less clear, however, is whether GI discomfort in general can also be related to GI barrier functions. In any case, methods of assessing, improving and maintaining gut health-related GI functions are of major interest in preventive medicine. © 2011 Bischoff; licensee BioMed Central Ltd. Source

Widmayer P.,University of Hohenheim
International journal of obesity (2005) | Year: 2012

Sensing of nutrients in the stomach is of crucial importance for the regulation of ingestive behavior especially in the context of metabolic dysfunctions such as obesity. Cells in the gastric mucosa with taste-signaling elements are considered as candidates for sensing the composition of ingested food and consequently modulate gastrointestinal processes. To assess whether obesity might have an impact on gastric chemosensory cells, gastric tissue samples from morbidly obese patients and normal-weight subjects were compared using a reverse transcriptase (RT)-PCR, qPCR and immunohistochemical approach. Analysis of biopsy tissue samples from human stomach revealed that transcripts for the taste-signaling elements, including the receptor T1R3 involved in the reception of amino acids and carbohydrates, the fatty acid receptor GPR120, the G protein gustducin, the effector enzyme PLCβ2 and the ion channel TRPM5 are present in the human gastric mucosa and led to the visualization of candidate chemosensory cells in the stomach expressing gustatory marker molecules. RT-PCR and qPCR analyses indicated striking differences in the expression profiles of specimens from obese subjects compared with controls. For GPR120, gustducin, PLCβ2 and TRPM5 the expression levels were increased, whereas for T1R3 the level decreased. Using TRPM5 as an example, we found that the higher expression level was associated with a higher number of TRPM5 cells in gastric tissue samples from obese patients. This remarkable change was accompanied by an increased number of ghrelin-positive cells. Our findings argue for a relationship between the amount of food intake and/or the energy status and the number of candidate chemosensory cells in the gastric mucosa. Source

Within the universe of food fermentation processes the multi-purpose use of nitrate and/or nitrite is a unique characteristic of meat fermentations. These curing agents play a decisive role in obtaining the specific sensory properties, stability and hygienic safety of products such as fermented sausages, ham and, more recently, emulsion type of sausages. The use of nitrate is the traditional method in curing processes and requires its reduction to reactive nitrite. Thus, nitrate reduction is the key event that is exclusively performed by microorganisms. Under controlled fermentation conditions starter cultures are used that contain staphylococci and/or Kocuria varians, which in addition to strongly affecting sensory properties exhibit efficient nitrate reductase activity. To obtain clean label products some plant sources of nitrate have been in use. When producing thermally treated sausages (e.g. of emulsion type), starter cultures are used that form nitrite before cooking takes place. Staphylococci reduce nitrite to ammonia after nitrate has been consumed. K.varians is devoid of nitrite reductase activity. Nitrate and nitrite reductases are also present in certain strains of lactobacilli. It was shown that their application as starter cultures warrants efficient activity in sausages made with either nitrate or nitrite. NO is formed from nitrite in numerous chemical reactions among which disproportionation and reaction with reductants either added or endogenous in meat are of practical importance. Numerous nitrosation and nitrosylation reactions take place in the meat matrix among which the formation of nitrosomyoglobin is of major sensory importance.Safety considerations in meat fermentation relate to the safe nature of the starter organisms and to the use of nitrate/nitrite. Staphylococci (" micrococci" ) in fermented meat have a long tradition in food use but have not received the QPS status from the EFSA. They require, therefore, thorough assessment with regard to toxigenicity and pathogenicity determinants as well as presence of transferable antibiotic resistance. Nitrate and nitrite are still considered basically undesired in food. The main objections are based on their potential to form nitrosamines with carcinogenic potential. In view of new results from intensive research of NO, potential risks are opposed by positive effects on human health. © 2011 Elsevier Ltd. Source

Dalbey R.E.,Ohio State University | Wang P.,Ohio State University | Kuhn A.,University of Hohenheim
Annual Review of Biochemistry | Year: 2011

Numerous membrane proteins form multisubunit protein complexes, which contain both integral and peripheral subunits, in addition to prosthetic groups. Bacterial membrane proteins are inserted into the inner membrane by the Sec translocase and YidC insertase. Their folding can be facilitated by YidC and the phospholipid phosphatidylethanolamine (PE). Glycine zippers and other motifs promote transmembrane-transmembrane (TM-TM) helix interactions that may lead to the formation of α±-helical bundles of membrane proteins. During or after membrane insertion, the subunits of oligomeric membrane proteins must find each other to build the homo-oligomeric and the hetero-oligomeric membrane complexes. Although chaperones may function as assembly factors in the formation of the oligomer, many protein oligomers appear to fold and oligomerize spontaneously. Current studies show that most subunits of hetero-oligomers follow a sequential and ordered pathway to form the membrane protein complex. If the inserted protein is misfolded or the membrane protein is misassembled, quality control mechanisms exist that can degrade the proteins. © 2011 by Annual Reviews. All rights reserved. Source

Piepho H.-P.,University of Hohenheim
BMC Medical Research Methodology | Year: 2014

Background: Network meta-analysis can be used to combine results from several randomized trials involving more than two treatments. Potential inconsistency among different types of trial (designs) differing in the set of treatments tested is a major challenge, and application of procedures for detecting and locating inconsistency in trial networks is a key step in the conduct of such analyses. Methods. Network meta-analysis can be very conveniently performed using factorial analysis-of-variance methods. Inconsistency can be scrutinized by inspecting the design × treatment interaction. This approach is in many ways simpler to implement than the more common approach of using treatment-versus-control contrasts. Results: We show that standard regression diagnostics available in common linear mixed model packages can be used to detect and locate inconsistency in trial networks. Moreover, a suitable definition of factors and effects allows devising significance tests for inconsistency. Conclusion: Factorial analysis of variance provides a convenient framework for conducting network meta-analysis, including diagnostic checks for inconsistency. © 2014 Piepho; licensee BioMed Central Ltd. Source

Discover hidden collaborations