Granada, Spain

University of Granada

www.ugr.es
Granada, Spain

The University of Granada is a public university located in the city of Granada that enrolls approximately 80,000 students, thereby becoming the fourth largest university in Spain. UGR also has campuses in Northern Africa , thus being the only European university with campuses in two continents. Founded in 1531 by Emperor Charles V, UGR has almost 500 years of history and it is one of the most famous universities in Spain.According to several rankings, the University of Granada ranks among top ten best Spanish universities and holds first place in Translation and Interpreting studies. In addition, UGR plays a major role in scientific output, placing high in national ranks and being one of the best world universities in computing and mathematics studies. The university has an important heritage thanks to its policy of using buildings of historical and cultural value. The Madrasah of Granada represents one such example. Furthermore, the university has major new facilities committed to innovation, such as the Parque Tecnológico de Ciencias de la Salud.Every year, over 2,000 European students enroll in UGR through the Erasmus Programme, making it the most popular European destination. The university's Center for Modern Languages receives over 10,000 international students each year. UGR also has been recently voted best Spanish university by international students. Wikipedia.


Time filter

Source Type

Patent
Stichting Vumc and University of Granada | Date: 2015-04-21

Disclosed are small ncRNAs that may be used as biomarkers for classifying the health status of an individual. The disclosure also provides screening methods for identifying ncRNA biomarkers.


Patent
Servicio Andaluz De Salud and University of Granada | Date: 2017-02-01

The invention relates to an aqueous melatonin composition exhibiting surprising long-term stability and allowing high concentrations of said water-insoluble active ingredient. The properties of said composition render it useful as an injectable, for example, for the intravenous administration thereof.


Patent
Servicio Andaluz De Salud and University of Granada | Date: 2015-03-27

The invention relates to an aqueous melatonin composition exhibiting surprising long-term stability and allowing high concentrations of said water-insoluble active ingredient. The properties of said composition render it useful as an injectable, for example, for the intravenous administration thereof.


The invention relates to the use of microorganisms as plant growth stimulants and for the biological control of bacterium, insects, fungi and phytopathogenic nematodes. More specifically, the invention relates to the use of microorganisms of the genus Bacillus, more specifically the Bacillus methylotrophicus species, as well as to cultures thereof, compositions comprising these bacteria, different culture methods and the products comprising same, as plant growth stimulants and for the biological control of bacterium, insects, fungi and phytopathogenic nematodes.


Patent
University of Granada and Servicio Andaluz De Salud | Date: 2017-06-21

The present invention relates to a serum-free conditioned medium that solves the drawbacks mentioned in the prior art, as it does not require prior handling of the cells, and it furthermore allows starting from a large population with no additional cost. This medium favors in vitro proliferation and conservation of the pluripotency potential that allows maintaining a state that is undifferentiated with respect to the subpopulation of cancer stem cells (CSCs) and in turn does not allow survival of the differentiated cells.


Patent
Stichting Vumc and University of Granada | Date: 2017-03-08

The present disclosure provides small ncRNAs as biomarkers for classifying the health status of an individual. The disclosure also provides screening methods for identifying ncRNA biomarkers.


The present invention provides an in vitro method of detecting circulating tumour cells, circulating tumour cells of epithelial phenotype and circulating tumour cells of epithelial to mesenchymal transition (EMTs), in a biological sample using, as an indicator, expression levels of miRNA-21, and obtaining a result of the method by comparing the expression levels of said miRNA-21 with a negative control or with a positive control, wherein if the expression levels in the cells of the biological sample are over-expressed in comparison to a negative control is indicative of the presence of circulating tumour cells in said biological sample or wherein if the expression levels in the cells of the biological sample are expressed in an amount greater than 2/3 of the maximum expression achieved in a positive control is indicative of the presence of circulating tumour cells in said biological sample.


Patent
University of Granada and Servicio Andaluz De Salud | Date: 2015-08-04

The present invention relates to a serum-free conditioned medium that solves the drawbacks mentioned in the prior art, as it does not require prior handling of the cells, and it furthermore allows starting from a large population with no additional cost. This medium favors in vitro proliferation and conservation of the pluripotency potential that allows maintaining a state that is undifferentiated with respect to the subpopulation of cancer stem cells (CSCs) and in turn does not allow survival of the differentiated cells.


The invention relates to the use of microorganisms as plant growth stimulants and for the biological control of bacterium, insects, fungi and phytopathogenic nematodes. More specifically, the invention relates to the use of microorganisms of the genus Bacillus, more specifically the Bacillus methylotrophicus species, as well as to cultures thereof, compositions comprising these bacteria, different culture methods and the products comprising same, as plant growth stimulants and for the biological control of bacterium, insects, fungi and phytopathogenic nematodes.


Grant
Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

Understanding the human brain is one of the greatest scientific challenges of our time. Such an understanding can provide profound insights into our humanity, leading to fundamentally new computing technologies, and transforming the diagnosis and treatment of brain disorders. Modern ICT brings this prospect within reach. The HBP Flagship Initiative (HBP) thus proposes a unique strategy that uses ICT to integrate neuroscience data from around the world, to develop a unified multi-level understanding of the brain and diseases, and ultimately to emulate its computational capabilities. The goal is to catalyze a global collaborative effort. During the HBPs first Specific Grant Agreement (SGA1), the HBP Core Project will outline the basis for building and operating a tightly integrated Research Infrastructure, providing HBP researchers and the scientific Community with unique resources and capabilities. Partnering Projects will enable independent research groups to expand the capabilities of the HBP Platforms, in order to use them to address otherwise intractable problems in neuroscience, computing and medicine in the future. In addition, collaborations with other national, European and international initiatives will create synergies, maximizing returns on research investment. SGA1 covers the detailed steps that will be taken to move the HBP closer to achieving its ambitious Flagship Objectives.

Loading University of Granada collaborators
Loading University of Granada collaborators