Fukui, Japan
Fukui, Japan

The University of Fukui is a national university of Japan located in the city of Fukui, the capital of Fukui Prefecture, Japan. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

To provide a multiplexer that makes it possible to achieve a reduction in size and that minimizes the influence of the expansion of laser light on a multiplexing unit. A multiplexer is provided with a plurality of waveguides, multiplexing units that are provided at an intermediate location within the waveguides, and laser light sources, wherein: the first multiplexing unit is arranged at a position that is closest to the laser light sources; and the laser light sources that have an optical axis at a position that is separated from the transmission axis of the visible light that is introduced into the first multiplexing unit are arranged so that the optical axis is inclined with respect to the transmission axis and the outer periphery of laser light that expands at a predetermined expansion angle passes in front of the first multiplexing unit.


Ito T.,University of Fukui | Oliver D.L.,University of Connecticut Health Center
Journal of Comparative Neurology | Year: 2014

Large GABAergic (LG) neurons are a distinct type of neuron in the inferior colliculus (IC) identified by their dense vesicular glutamate transporter 2 (VGLUT2)-containing axosomatic synaptic terminals. Yet the sources of these terminals are unknown. Since IC glutamatergic neurons express VGLUT2, and IC neurons are known to have local collaterals, we tested the hypothesis that these excitatory, glutamatergic axosomatic inputs on LG neurons come from local axonal collaterals and commissural IC neurons. We injected a recombinant viral tracer into the IC which enabled Golgi-like green fluorescent protein (GFP) labeling in both dendrites and axons. In all cases, we found terminals positive for both GFP and VGLUT2 (GFP+/VGLUT2+) that made axosomatic contacts on LG neurons. One to six axosomatic contacts were made on a single LG cell body by a single axonal branch. The GFP-labeled neurons giving rise to the VGLUT2+ terminals on LG neurons were close by. The density of GFP+/VGLUT2+ terminals on the LG neurons was related to the number of nearby GFP-labeled cells. On the contralateral side, a smaller number of LG neurons received axosomatic contacts from GFP+/VGLUT2+ terminals. In cases with a single GFP-labeled glutamatergic neuron, the labeled axonal plexus was flat, oriented in parallel to the fibrodendritic laminae, and contacted 9-30 LG cell bodies within the plexus. Our data demonstrated that within the IC microcircuitry there is a convergence of inputs from local IC excitatory neurons on LG cell bodies. This suggests that LG neurons are heavily influenced by the activity of the nearby laminar glutamatergic neurons in the IC. © 2014 Wiley Periodicals, Inc.


Ito T.,University of Fukui | Oliver D.L.,University of Connecticut Health Center
Frontiers in Neural Circuits | Year: 2012

The inferior colliculus (IC) in the midbrain of the auditory system uses a unique basic circuit to organize the inputs from virtually all of the lower auditory brainstem and transmit this information to the medial geniculate body (MGB) in the thalamus. Here, we review the basic circuit of the IC, the neuronal types, the organization of their inputs and outputs. We specifically discuss the large GABAergic (LG) neurons and how they differ from the small GABAergic (SG) and the more numerous glutamatergic neurons. The somata and dendrites of LG neurons are identified by axosomatic glutamatergic synapses that are lacking in the other cell types and exclusively contain the glutamate transporter VGLUT2. Although LG neurons are most numerous in the central nucleus of the IC (ICC), an analysis of their distribution suggests that they are not specifically associated with one set of ascending inputs. The inputs to ICC may be organized into functional zones with different subsets of brainstem inputs, but each zone may contain the same three neuron types. However, the sources of VGLUT2 axosomatic terminals on the LG neuron are not known. Neurons in the dorsal cochlear nucleus, superior olivary complex, intermediate nucleus of the lateral lemniscus, and IC itself that express the gene for VGLUT2 only are the likely origin of the dense VGLUT2 axosomatic terminals on LG tectothalamic neurons. The IC is unique since LG neurons are GABAergic tectothalamic neurons in addition to the numerous glutamatergic tectothalamic neurons. SG neurons evidently target other auditory structures. The basic circuit of the IC and the LG neurons in particular, has implications for the transmission of information about sound through the midbrain to the MGB. © 2012 Ito and Oliver.


Takahashi T.,University of Fukui
Progress in Neuro-Psychopharmacology and Biological Psychiatry | Year: 2013

Recent reports of functional and anatomical studies have provided evidence that aberrant neural connectivity lies at the heart of many mental disorders. Information related to neural networks has elucidated the nonlinear dynamical complexity in brain signals over a range of temporal scales. The recent advent of nonlinear analytic methods, which have served for the quantitative description of the brain signal complexity, has provided new insights into aberrant neural connectivity in many mental disorders. Although many studies have underpinned aberrant neural connectivity, findings related to complexity behavior are still inconsistent. This inconsistency might result from (i) heterogeneity in mental disorders, (ii) analytical issues, (iii) interference of typical development and aging. First, most mental disorders are heterogeneous in their clinical feature or intrinsic pathological mechanisms. Second, neurophysiologic output signals from complex brain connectivity might be characterized with multiple time scales or frequencies. Finally, age-related brain complexity changes must be considered when investigating pathological brain because typical brain complexity is not constant across generations. Future systematic studies addressing these issues will greatly expand our knowledge of neural connections and dynamics related to mental disorders. © 2012 Elsevier Inc.


Iwamoto M.,University of Fukui | Oiki S.,University of Fukui
Proceedings of the National Academy of Sciences of the United States of America | Year: 2013

Membrane lipids modulate the function of membrane proteins. In the case of ion channels, they bias the gating equilibrium, although the underlying mechanism has remained elusive. Here we demonstrate that the N-terminal segment (M0) of the KcsA potassium channel mediates the effect of changes in the lipid milieu on channel gating. The M0 segment is a membrane-anchored amphipathic helix, bearing positively charged residues. In asymmetric membranes, the M0 helix senses the presence of negatively charged phospholipids on the inner leaflet.Upon gating, theM0 helix revolves around the axis of the helix on the membrane surface, inducing the positively charged residues to interact with the negative head groups of the lipids so as to stabilize the open conformation (i.e., the "roll-and-stabilize model"). The M0 helix is thus a charge-sensitive "antenna," capturing temporary changes in lipid composition in the fluidic membrane. This unique type of sensory device may be shared by various types of membrane proteins.


The most essential properties of ion channels for their physiologically relevant functions are ion-selective permeation and gating. Among the channel species, the potassium channel is primordial and the most ubiquitous in the biological world, and knowledge of this channel underlies the understanding of features of other ion channels. The strategy applied to studying channels changed dramatically after the crystal structure of the potassium channel was resolved. Given the abundant structural information available, we exploited the bacterial KcsA potassium channel as a simple model channel. In the postcrystal age, there are two effective frameworks with which to decipher the functional codes present in the channel structure, namely reconstitution and re-animation. Complex channel proteins are decomposed into essential functional components, and well-examined parts are rebuilt for integrating channel function in the membrane (reconstitution). Permeation and gating are dynamic operations, and one imagines the active channel by breathing life into the 'frozen' crystal (re-animation). Capturing the motion of channels at the single-molecule level is necessary to characterize the behaviour of functioning channels. Advanced techniques, including diffracted X-ray tracking, lipid bilayer methods and high-speed atomic force microscopy, have been used. Here, I present dynamic pictures of the KcsA potassium channel from the submolecular conformational changes to the supramolecular collective behaviour of channels in the membrane. These results form an integrated picture of the active channel and offer insights into the processes underlying the physiological function of the channel in the cell membrane. © 2015 The Physiological Society.


Patent
University of Fukui, Hokuriku University and Taiyo Nippon Sanso | Date: 2015-02-18

The present invention provides a compound represented by the formula (I):


Patent
University of Fukui and DS Pharma Biomedical Co. | Date: 2015-09-16

Provided is a method of measuring and comparing multimer FSP1 and monomer FSP1 by using an FSP1-specific antibody and the like.


Patent
University of Electro - Communications, University of Tokyo and University of Fukui | Date: 2013-08-21

Implementation including a brain activity data acquisition unit (103) configured to acquire data on brain activity of a human body; a generator (101) configured to generate a stimulation signal based on predetermined stimulation parameters or stimulation parameters determined from the data acquired by the brain activity data acquisition unit, the stimulation signal being to be applied, for activity of a specific brain region to be activated in order to move a joint of the human body, to a nerve corresponding to the specific brain region; and an output unit (102) configured to output the stimulation signal generated by the generator.


Patent
University of Fukui and Jnc Corporation | Date: 2015-01-16

The present invention provides a method of detecting dermatophyte, which does not require a complicated operation such as an enzyme treatment and a heat treatment. The present invention provides a method of detecting dermatophyte, including a step of extracting a dermatophyte component from a sample with a treatment liquid containing a non-ionic surfactant or a zwitterionic surfactant, and a kit for diagnosing dermatophyte infection, containing a treatment liquid comprising the above surfactant, and an antibody specifically recognizing a dermatophyte component, which are housed in separate containers.

Loading University of Fukui collaborators
Loading University of Fukui collaborators