Time filter

Source Type

Exeter, United Kingdom

The University of Exeter is a public research university located in South West England, United Kingdom. The university was founded and received its Royal Charter in 1955, although its predecessor institutions, the Royal Albert Memorial College and the University College of the South West of England, were established in 1900 and 1922 respectively. In post-nominals, the University of Exeter is abbreviated as Exon. , and is the suffix given to honorary and academic degrees from the university.The university has three campuses: Streatham; St Luke's ; and Tremough in Cornwall. The university is centred in the city of Exeter, Devon, where it is the principal higher education institution. Streatham is the largest campus containing many of the university's administrative buildings, and is regarded as one of the most beautiful in the country. The Tremough campus is maintained in conjunction with Falmouth University under the Combined Universities in Cornwall initiative.The University of Exeter was named The Sunday Times University of the Year in 2013 and was the Times Higher Education University of the Year in 2007. Exeter has maintained a top ten position in the National Student Survey since the survey was launched in 2005. In 2011, it was considered as being one of the top 12 elite universities in the United Kingdom, and has been consistently ranked as one of the top 10 UK universities in recent years.According to the Sunday Times University Guide 2015, Exeter ranks at #7, making it the best university in the South West of England.Exeter University is a member of the Russell Group of leading research-intensive UK universities. The university is also a member of Universities UK, the European University Association, and the Association of Commonwealth Universities and is an accredited institution of the Association of MBAs . Wikipedia.

Jones A.M.,University of Exeter
Sports Medicine

Dietary nitrate is growing in popularity as a sports nutrition supplement. This article reviews the evidence base for the potential of inorganic nitrate to enhance sports and exercise performance. Inorganic nitrate is present in numerous foodstuffs and is abundant in green leafy vegetables and beetroot. Following ingestion, nitrate is converted in the body to nitrite and stored and circulated in the blood. In conditions of low oxygen availability, nitrite can be converted into nitric oxide, which is known to play a number of important roles in vascular and metabolic control. Dietary nitrate supplementation increases plasma nitrite concentration and reduces resting blood pressure. Intriguingly, nitrate supplementation also reduces the oxygen cost of submaximal exercise and can, in some circumstances, enhance exercise tolerance and performance. The mechanisms that may be responsible for these effects are reviewed and practical guidelines for safe and efficacious dietary nitrate supplementation are provided. © The Author(s) 2014. Source

Steinberg G.,University of Exeter
Current Opinion in Microbiology

Hyphal growth of filamentous fungi requires microtubule-based long-distance motility of early endosomes. Since the discovery of this process in Ustilago maydis, our understanding of its molecular basis and biological function has greatly advanced. Studies in U. maydis and Aspergillus nidulans reveal a complex interplay of the motor proteins kinesin-3 and dynein, which co-operate to support bi-directional motion of early endosomes. Genetic screening has shed light on the molecular mechanisms underpinning motor regulation, revealing Hook protein as general motor adapters on early endosomes. Recently, fascinating insight into unexpected roles for endosome motility has emerged. This includes septin filament formation and cellular distribution of the machinery for protein translation. © 2014. Source

Changes in climate variability are arguably more important for society and ecosystems than changes in mean climate, especially if they translate into altered extremes1-3. There is a common perception and growing concern that human-induced climate change will lead to more volatile and extremeweather4. Certain types of extreme weather have increased in frequency and/or severity5-7, in part because of a shift in mean climate but also because of changing variability1-3,8-10. In spite of mean climate warming, an ostensibly large number of high-impact cold extremes have occurred in the Northern Hemisphere mid-latitudes over the past decade 11. One explanation is that Arctic amplification-the greater warming of the Arctic compared with lower latitudes12 associated with diminishing sea ice and snow cover-is altering the polar jet stream and increasing temperature variability13-16. This study shows, however, that subseasonal cold-season temperature variability has significantly decreased over the mid- to high-latitude Northern Hemisphere in recent decades. This is partly because northerly winds and associated cold days are warming more rapidly than southerly winds and warm days, and so Arctic amplification acts to reduce subseasonal temperature variance. Previous hypotheses linking Arctic amplification to increased weather extremes invoke dynamical changes in atmospheric circulation11,13-16, which are hard to detect in present observations17,18 and highly uncertain in the future19,20. In contrast, decreases in subseasonal cold-season temperature variability, in accordance with the mechanism proposed here, are detectable in the observational record and are highly robust in twenty-first-century climate model simulations. © 2014 Macmillan Publishers Limited. All rights reserved. Source

University of Exeter | Date: 2014-01-14

A detector is described comprising a first graphene element (

University of Exeter | Date: 2013-03-28

There is provided an epsilon toxin epitope polypeptide comprising a sequence of at least 10 contiguous amino acids from SEQ ID NO:3, the sequence comprising a mutation of at least one tyrosine residue compared to the equivalent sequence in SEQ ID NO:3, the polypeptide being capable of binding an antibody which binds to SEQ ID NO:5 and having reduced toxicity compared with the toxicity of SEQ ID NO:5. The polypeptide is useful in a method of vaccinating a subject against developing a disease caused by

Discover hidden collaborations