Entity

Time filter

Source Type

Kuopio, Finland

The University of Eastern Finland is a university in Finland with three campuses in Joensuu, Kuopio, and Savonlinna. It was formed in 2010 by a merger of two previously independent universities. Wikipedia.


Pitkanen A.,University of Eastern Finland | Lukasiuk K.,Nencki Institute of Experimental Biology
The Lancet Neurology | Year: 2011

Prevention of epileptogenesis after brain trauma is an unmet medical challenge. Recent molecular profiling studies have provided an insight into molecular changes that contribute to formation of ictogenic neuronal networks, including genes regulating synaptic or neuronal plasticity, cell death, proliferation, and inflammatory or immune responses. These mechanisms have been targeted to prevent epileptogenesis in animal models. Favourable effects have been obtained using immunosuppressants, antibodies blocking adhesion of leucocytes to endothelial cells, gene therapy driving expression of neurotrophic factors, pharmacological neurostimulation, or even with conventional antiepileptic drugs by administering them before the appearance of genetic epilepsy. Further studies are needed to clarify the optimum time window and aetiological specificity of treatments. Questions related to adverse events also need further consideration. Encouragingly, the recent experimental studies emphasise that the complicated process of epileptogenesis can be favourably modified, and that antiepileptogenesis as a treatment indication might not be an impossible mission. © 2011 Elsevier Ltd. Source


Virtanen J.K.,University of Eastern Finland
Journal of the American Heart Association | Year: 2013

Consumption of tuna or other broiled or baked fish, but not fried fish, is associated with fewer subclinical brain abnormalities on magnetic resonance imaging (MRI). We investigated the association between plasma phospholipid omega-3 polyunsaturated fatty acids (PUFAs), objective biomarkers of exposure, and subclinical brain abnormalities on MRI. In the community-based Cardiovascular Health Study, 3660 participants aged ≥ 65 underwent brain MRI in 1992-1994, and 2313 were rescanned 5 years later. MRIs were centrally read by neuroradiologists in a standardized, blinded manner. Participants with recognized transient ischemic attacks or stroke were excluded. Phospholipid PUFAs were measured in stored plasma collected in 1992-1993 and related to cross-sectional and longitudinal MRI findings. After multivariable adjustment, the odds ratio for having a prevalent subclinical infarct was 0.60 (95% CI, 0.44 to 0.82; P for trend = 0.001) in the highest versus lowest long-chain omega-3 PUFA quartile. Higher long-chain omega-3 PUFA content was also associated with better white matter grade, but not with sulcal or ventricular grades, markers of brain atrophy, or with incident subclinical infarcts. The phospholipid intermediate-chain omega-3 PUFA alpha-linolenic acid was associated only with modestly better sulcal and ventricular grades. However, this finding was not supported in the analyses with alpha-linolenic acid intake. Among older adults, higher phospholipid long-chain omega-3 PUFA content was associated with lower prevalence of subclinical infarcts and better white matter grade on MRI. Our results support the beneficial effects of fish consumption, the major source of long-chain omega-3 PUFAs, on brain health in later life. The role of plant-derived alpha-linolenic acid in brain health requires further investigation. Source


Coevolutionary studies on plants and plant-feeding insects have significantly improved our understanding of the role of niche shifts in the generation of new species. Evolving plant lineages essentially constitute moving islands and archipelagoes in resource space, and host shifts by insects are usually preceded by colonizations of novel resources. Critical to hypotheses concerning ecological speciation is what happens immediately before and after colonization attempts: if an available plant is too similar to the current host(s), it simply will be incorporated into the existing diet, but if it is too different, it will not be colonized in the first place. It thus seems that the probability of speciation is maximized when alternative hosts are at an 'intermediate' distance in resource space. In this review, I wish to highlight the possibility that resource similarity and, thus, the definition of 'intermediate', are subjective concepts that depend on the herbivore lineage's tolerance to dietary variation. This subjectivity of similarity means that changes in tolerance can either decrease or increase speciation probabilities depending on the distribution of plants in resource space: insect lineages with narrow tolerances are likely to speciate by 'island-hopping' on young, species-rich plant groups, whereas more generalized lineages could speciate by shifting among resource archipelagoes formed by higher plant taxa. Repeated and convergent origins of traits known to broaden or to restrict host-plant use in multiple different insect groups provide opportunities for studying how tolerance and resource heterogeneity may interact to determine speciation rates. © 2009 Cambridge Philosophical Society. Source


Tahvanainen T.,University of Eastern Finland
Journal of Ecology | Year: 2011

Hydrological changes due to drainage and climate warming can have great impact on the ecosystem balance of boreal mires. The possibility of ombrotrophication, i.e. the development from fen to bog, in response to altered hydrology has not been previously tested. Here, recent changes in vegetation and surface peat are studied in an aapa mire, a typical boreal mire system dominated by fen vegetation. Drainage in the catchment from 1968 onwards led to the change from richly minerogenous to ombrogenous hydrology, thus providing a long-term ombrotrophication experiment. A sequence of aerial photographs (1941, 1953, 1965, 1974, 1984, 1995, 2005) revealed a dramatic shift from fen vegetation to the nearly complete dominance of peat mosses (Sphagnum) within two decades after the catchment disturbance. A distinct change from Carex peat to Sphagnum peat at the average depth of 23.3cm (SE 0.8cm) was found in 18 peat cores. All of the new Sphagnum peat had accumulated within the last four decades. This was verified by the relationship of age and rooting depth of 37 small pines (Pinus sylvestris) and by two pollen density profiles. The ratio Ca/Mg diminished towards the surface of peat profiles indicating change from minerogenous to ombrogenous hydrology. In accordance, extremely low pH (range 3.8-4.2) and conductivity (average 14.5μscm-1) were measured in the surface pore water. The average total dry mass of new Sphagnum peat was 7042gm-2 (SE 442) and the recent apparent rate of carbon accumulation was 100.6gm-2year-1 (SE 6.3), as calculated for a 35-year period and 50% carbon content. Synthesis. Remarkable potential for vegetation change and increase of peat growth is demonstrated in boreal aapa mires. Ombrotrophication can be initiated within a few decades in response to reduced input of minerogenous water. Future changes in the hydrological cycle, as indicated by climate change models, are similar to the impact of catchment disturbance in aapa mires. Diminished total water budgets during the summer cause a decrease of minerogenous input and a draw-down of water level, both of which may promote the growth of Sphagnum over fen vegetation. © 2011 The Author. Journal of Ecology © 2011 British Ecological Society. Source


Riikonen R.,University of Eastern Finland
CNS Drugs | Year: 2014

Adrenocorticotrophic hormone (ACTH), oral corticosteroids and vigabatrin are now first-line treatments for infantile spasms in the US and Europe. There is now increased knowledge regarding the role of ACTH, corticosteroids and vigabatrin (e.g. efficacy, doses, side effects, treatment in specific aetiological subtypes of infantile spasms), and other antiepileptic drugs (i.e. topiramate, valproate, zonisamide, sulthiame, levetiracetam, lamotrigine, pyridoxine, ganaxolone), as well as adjunctive flunarizine and novel drugs not yet in clinical use for infantile spasms (i.e. pulse rapamycin and melanocortin receptor agonists). The existence of a latent period, weeks to months following a precipitating brain insult, raises the possibility of preventive interventions. Recent experimental data emerging from animal models of infantile spasms have provided optimism that new and innovative treatments can be developed, and knowledge that drug treatment can affect long-term cognitive outcome is increasing. The aim of this article is to review recent developments in the pharmacotherapy of infantile spasms and to highlight the practical implications of the latest research. © 2014 Springer International Publishing Switzerland. Source

Discover hidden collaborations