Newark, DE, United States

University of Delaware
Newark, DE, United States

The University of Delaware is the largest university in Delaware. The main campus is in Newark, with satellite campuses in Dover, Wilmington, Lewes, and Georgetown. It is medium-sized – approximately 16,000 undergraduate and 3,500 graduate students. UD is a private university and receives public funding for being a land-grant, sea-grant, space-grant and urban-grant state-supported research institution. As of 2013, the school's endowment is valued at about US$1.171 billion. Delaware has been labeled one of the "Public Ivies," a publicly funded university considered as providing a quality of education comparable to those of the Ivy League.UD is classified as a research university with very high research activity by the Carnegie Classification of Institutions of Higher Education. The university's programs in engineering, science, business, hospitality management, education, urban affairs and public policy, public administration, agriculture, history, chemical and biomolecular engineering, chemistry and biochemistry have been highly ranked with some drawing from the historically strong presence of the nation's chemical and pharmaceutical industries in the state of Delaware, such as DuPont and W. L. Gore and Associates. It is one of only four schools in North America with a major in art conservation. UD was the first American university to begin a study abroad program.The school from which the university grew was founded in 1743, making it one of the oldest in the nation. However, UD was not chartered as an institution of higher learning until 1833. Its original class of ten students included George Read, Thomas McKean, and James Smith, all three of whom would go on to sign the Declaration of Independence. Wikipedia.

Time filter

Source Type

Malware detection methods systems, and apparatus are described. Malware may be detected by obtaining a plurality of malware binary executables and a plurality of goodware binary executables, decompiling the plurality of malware binary executables and the plurality of goodware binary executable to extract corresponding assembly code for each of the plurality of malware binary executables and the plurality of goodware binary executable, constructing call graphs for each of the plurality of malware binary executables and the plurality of goodware binary executables from the corresponding assembly code, determining similarities between the call graphs using graph kernels applied to the call graphs for each of the plurality of malware binary executables and the plurality of goodware binary executables, building a malware detection model from the determined similarities between call graphs by applying a machine learning algorithm such as a deep neural network (DNN) algorithm to the determined similarities, and identifying whether a subject executable is malware by applying the built malware detection model to the subject executable.

The invention provides a system and a process that allow for the selective electrochemical conversion of carbon dioxide to carbon monoxide with high energy efficiency, using a cathode comprised of tin in combination with an anode comprised of platinum. The electrolysis system may be comprised of a single or two compartment cell and may employ an organic electrolyte or an ionic liquid electrolyte. The invention permits the storage of solar, wind or conventional electric energy by converting carbon dioxide to carbon monoxide and liquid fuels.

University of Delaware | Date: 2015-07-21

A compound including a cation of the following structure is provided (1), wherein Q is selected from the group consisting of polymer residues and substituted or unsubstituted alkyl groups, and R is H or a polymer residue. A membrane including the above cation, and electrochemical devices employing this membrane, are also provided.

University of Delaware and Rowan University | Date: 2015-05-27

A compound is provided according to structure 4, (4) wherein n has a value from 0 to 48 and Z is hydroxyl or a benzene ring bearing substituents R_(11)-R_(15), wherein R_(1)-R_(15 )are each individually selected from the group consisting of H, allyl, alkyl, alkoxy, phenyl, phenoxy, halide, hydroxyl, glycidyl, (meth)acryloyl, 3-(meth)acryloyl-2-hydroxy-1-propoxy, 2,3-epoxypropyl, maleate, and structure (a) wherein at least one of R_(1)-R_(5), at least one of R_(6)-R_(10), and at least one of R_(11)-R_(15 )is hydroxyl or an ether or ester derived from it.

University of Delaware | Date: 2015-07-30

A self-healing composite membrane includes a continuous ionomer phase in which is dispersed a plurality of hollow fibers and/or microcapsules each containing a liquid healing agent that includes a dispersion or solution of a healing ionomer in a liquid vehicle. Electrochemical devices employing the self-healing composite membranes are provided.

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: NMP-23-2015 | Award Amount: 7.15M | Year: 2016

The demand for lower dependency on critical raw materials (CRM) such as rare earths (RE) is not only a European but a global problem that demands immediate action. The purpose of this project is to exploit advanced theoretical and computation methods together with state-of-the-art materials preparation and characterization techniques, to develop the next generation RE-free/lean permanent magnets (PM). The material design will be driven by automated large computational screening of new and novel intermetallic compounds with uniaxial structure in order to achieve high saturation magnetisation, magnetocrystalline anisotropy and Curie temperature. The simulations will be based on a primary screening detecting the mechanisms that give rise to distorted phases and stabilize them, by adding doping atoms as stabilizers. In a further computation on successfully synthetized compounds, micromagnetic calculations will be used in order to design the optimal microstructure for the given phases that will maximise the coercivity needed for a PM. Extensive experimental processing and characterisation of the selected phases will result in a first proof of principle of the feasibility of NOVAMAG PMs. A multidisciplinary team of magnet experts consisting of chemists, material scientists, physicists and engineers from academia, national labs and industry is assembled to undertake a concerted, systematic and innovative study to overcome the problems involved and develop the next generation RE-free/lean PMs. Currently the demand for these PM s is even higher with the emerging markets of hybrid/electric vehicles and wind mill power systems. The proposed project will provide the fundamental innovations and breakthroughs which will have a major impact in re-establishing the Europe as a leader in the science, technology and commercialization of this very important class of materials and help decrease our dependence on China, which will in turn improve the competitiveness of EU manufacturers.

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: NMP-23-2015 | Award Amount: 4.98M | Year: 2016

To date, three way catalytic converters (TWCs) have been established as the most effective engine exhaust after-treatment system. However, TWCs not only fail to address the issue of particulate matter (PM) emissions but are also the main industrial consumer of Critical Raw Materials (CRMs) mainly Platinum Group Metals (PGMs) and Rare Earth elements (REEs), with the automotive industry accounting for 65%-80% of total EU PGMs demand. The enforcement of new limits on PM emissions (EURO 6c/7) will require higher TWC performance, hence leading to further increase the CRMs content in autocatalysts. Addressing the necessity of CRMs reduction in catalysis, PARTIAL-PGMs proposes an integrated approach for the rational design of innovative nanostructured materials of low/zero PGMs/REEs content for a hybrid TWC/Gasoline Particulate Filter (GPF) for automotive emissions after-treatment with continuous particulates combustion also focusing on identifying and fine-tuning the parameters involved in their preparation, characterization and performance evaluation under realistic conditions. PARTIAL-PGMs approach is broad, covering multiscale modeling, synthesis and nanomaterials characterization, performance evaluation under realistic conditions as well as recyclability, health impact analysis and Life Cycle Assessment. The rational synthesis of nanomaterials to be used in these hybrid systems will allow for a reduction of more than 35% in PGMs and 20% in REEs content, either by increasing performance or by their replacement with transition metals. The compact nature of the new hybrid system not only will allow its accommodation in smaller cars but will also reduce cold start emissions and light-off times with performance aiming to anticipate both future emission control regulations and new advances in engines technology. Such R&D progress in autocatalysts is expected to pave the way to the widespread use of such low CRMs content materials in other catalytic applications.

Zondlo N.J.,University of Delaware
Accounts of Chemical Research | Year: 2013

Proline residues have unique roles in protein folding, structure, and function. Proline and the aromatic amino acids comprise the encoded cyclic protein residues. Aromatic protein side chains are defined by their negatively charged π faces, while the faces of the proline ring are partially positively charged. This polarity results from their two-point connection of the side chain to the electron-withdrawing protein backbone, and the lower electronegativity of hydrogen compared to carbon, nitrogen, and oxygen. The hydrogens adjacent to the carbonyl and amide nitrogen, Hα and Hδ, respectively, are the most partially positive. Proline's side chain is also conformationally restricted, allowing for interaction with aromatic residues with minimal entropic or steric penalty. Proline and aromatic residues can interact favorably with each other, due to both the hydrophobic effect and the interaction between the π aromatic face and the polarized C-H bonds, called a CH/π interaction. Aromatic-proline interactions can occur locally, for example, to stabilize cis-amide bonds, and over larger distances, in the tertiary structures of proteins, and intermolecularly in protein-protein interactions. In peptides and proteins, aromatic-proline sequences more readily adopt cis-prolyl amide bonds, where the aromatic ring interacts with the proline ring in the cis conformation. In aromatic-proline sequences, Trp and Tyr are more likely to induce cis-amide bonds than Phe, suggesting an aromatic electronic effect. This result would be expected for a CH/π interaction, in which a more electron-rich aromatic would have a stronger (more cis-stabilizing) interaction with partial positive charges on prolyl hydrogens.In this Account, we describe our investigations into the nature of local aromatic-proline interactions, using peptide models. We synthesized a series of 26 peptides, TXPN, varying X from electron-rich to electron poor aromatic amino acids, and found that the population of cis-amide bond (Ktrans/cis) is tunable by aromatic electronics. With 4-substituted phenylalanines, we observed a Hammett correlation between aromatic electronics and Ktrans/cis, with cis-trans isomerism electronically controllable by 1.0 kcal/mol. All aromatic residues exhibit a higher cis population than Ala or cyclohexylalanine, with Trp showing the strongest aromatic-proline interaction. In addition, proline stereoelectronic effects can modulate cis-trans isomerism by an additional 1.0 kcal/mol. The aromatic-proline interaction is enthalpic, consistent with its description as a CH/π interaction. Proline-aromatic sequences can also promote cis-prolyl bonds, either through interactions of the aromatic ring with the preceding cis-proline or with the Hα prior to cis-proline. Within proline-rich peptides, sequences commonly found in natively disordered proteins, aromatic residues promote multiple cis-amide bonds due to multiple favorable aromatic-proline interactions. Collectively, we found aromatic-proline interactions to be significantly CH/π in nature, tunable by aromatic electronics. We discuss these data in the context of aromatic-proline and aromatic-glycine interactions in local structure, in tertiary structure, in protein-protein interactions, and in protein assemblies. © 2012 American Chemical Society.

Braun R.J.,University of Delaware
Annual Review of Fluid Mechanics | Year: 2011

This review discusses the current understanding of tear-film physiology and mathematical models for some of its dynamics. First, a brief introduction to the tear film and the ocular surface is given. Next, mathematical models for the tear film are discussed, with an emphasis on models that describe the formation and relaxation of the tear film from blinking. Finally, future issues in tear film modeling are presented.

Agency: NSF | Branch: Cooperative Agreement | Program: | Phase: RESEARCH INFRASTRUCTURE IMPROV | Award Amount: 6.00M | Year: 2016

Non-Technical Description
This Research Infrastructure Improvement Track-2 Focused EPSCoR Collaboration (RII Track-2 FEC) proposal is a collaboration between three institutions in Delaware, Nevada, and Nebraska, namely the University of Delaware, the University of Nevada, Reno, and the University of Nebraska, Lincoln. The project will focus on better understanding the complex relationship between existing knowledge and information obtained through sensory perception, a central question in cognitive neuroscience. To help coordinate the research and provide training for participants, the project will set up three distributed ?methods cores?. Members of each methods core will be available for day-to-day consultations on their respective methodologies, and also conduct training workshops to achieve transfer of expertise across institutions and thus develop human infrastructure in each jurisdiction. These cores will provide support and establish standards in the implementation, analysis, and interpretation of all experiments. Another goal of the project is to promote the entry of undergraduates into graduate programs in neuroscience. To this end, the project will host summer ?brain camps? in cognitive neuroscience. Special efforts will be made to attract undergraduate and graduate students from groups traditionally under-represented in neuroscience by providing full financial support to such students and recruiting at a variety of appropriate venues.

Technical Description
The research efforts will address the interplay between knowledge and perception in a complementary manner. The first research module will investigate the formation of new knowledge via Statistical Learning, the learning of associations among sensory stimuli that tend to co-occur in temporal or spatial patterns. The second module will investigate the interactions between spatial representations of perceived objects, prior knowledge of object use, and body position, as well as the effects of these inputs into perception. The third module will examine the impact of knowledge on attention and working memory. Orthogonal to the organization of the research modules, the project will set up three ?methods cores?, focused on Neuroimaging, Neuropsychology, and Neurostimulation, that will provide support, training, and advice to members of all research modules:. The cores will host three week-long, intensive summer workshops, open to faculty and trainees from all three sites. The resources of the methods cores will also be available to new faculty at each institution, as part of planned recruitment of neuroscience faculty.

Loading University of Delaware collaborators
Loading University of Delaware collaborators