Entity

Time filter

Source Type

Newark, DE, United States

The University of Delaware is the largest university in Delaware. The main campus is in Newark, with satellite campuses in Dover, Wilmington, Lewes, and Georgetown. It is medium-sized – approximately 16,000 undergraduate and 3,500 graduate students. UD is a private university and receives public funding for being a land-grant, sea-grant, space-grant and urban-grant state-supported research institution. As of 2013, the school's endowment is valued at about US$1.171 billion. Delaware has been labeled one of the "Public Ivies," a publicly funded university considered as providing a quality of education comparable to those of the Ivy League.UD is classified as a research university with very high research activity by the Carnegie Classification of Institutions of Higher Education. The university's programs in engineering, science, business, hospitality management, education, urban affairs and public policy, public administration, agriculture, history, chemical and biomolecular engineering, chemistry and biochemistry have been highly ranked with some drawing from the historically strong presence of the nation's chemical and pharmaceutical industries in the state of Delaware, such as DuPont and W. L. Gore and Associates. It is one of only four schools in North America with a major in art conservation. UD was the first American university to begin a study abroad program.The school from which the university grew was founded in 1743, making it one of the oldest in the nation. However, UD was not chartered as an institution of higher learning until 1833. Its original class of ten students included George Read, Thomas McKean, and James Smith, all three of whom would go on to sign the Declaration of Independence. Wikipedia.


Patent
University of Delaware and Diapedia, Llc | Date: 2014-03-06

The improved footwear system of the present application uses composite materials in the design of an advanced modular in-shoe foot orthosis and a new container assembly which includes a high performance energy storage and return element orthosis. The footwear system uses a method of manufacture incorporating a new last model. The advantages of the footwear system over standard issue combat boots include lower weight, improved treatment of lower extremity overuse injuries and reduction of the occurrence of such overuse injuries by protecting at-risk feet with advanced footwear which can be customized to meet the biomechanical needs as well as the specific activities of the wearer.


Zondlo N.J.,University of Delaware
Accounts of Chemical Research | Year: 2013

Proline residues have unique roles in protein folding, structure, and function. Proline and the aromatic amino acids comprise the encoded cyclic protein residues. Aromatic protein side chains are defined by their negatively charged π faces, while the faces of the proline ring are partially positively charged. This polarity results from their two-point connection of the side chain to the electron-withdrawing protein backbone, and the lower electronegativity of hydrogen compared to carbon, nitrogen, and oxygen. The hydrogens adjacent to the carbonyl and amide nitrogen, Hα and Hδ, respectively, are the most partially positive. Proline's side chain is also conformationally restricted, allowing for interaction with aromatic residues with minimal entropic or steric penalty. Proline and aromatic residues can interact favorably with each other, due to both the hydrophobic effect and the interaction between the π aromatic face and the polarized C-H bonds, called a CH/π interaction. Aromatic-proline interactions can occur locally, for example, to stabilize cis-amide bonds, and over larger distances, in the tertiary structures of proteins, and intermolecularly in protein-protein interactions. In peptides and proteins, aromatic-proline sequences more readily adopt cis-prolyl amide bonds, where the aromatic ring interacts with the proline ring in the cis conformation. In aromatic-proline sequences, Trp and Tyr are more likely to induce cis-amide bonds than Phe, suggesting an aromatic electronic effect. This result would be expected for a CH/π interaction, in which a more electron-rich aromatic would have a stronger (more cis-stabilizing) interaction with partial positive charges on prolyl hydrogens.In this Account, we describe our investigations into the nature of local aromatic-proline interactions, using peptide models. We synthesized a series of 26 peptides, TXPN, varying X from electron-rich to electron poor aromatic amino acids, and found that the population of cis-amide bond (Ktrans/cis) is tunable by aromatic electronics. With 4-substituted phenylalanines, we observed a Hammett correlation between aromatic electronics and Ktrans/cis, with cis-trans isomerism electronically controllable by 1.0 kcal/mol. All aromatic residues exhibit a higher cis population than Ala or cyclohexylalanine, with Trp showing the strongest aromatic-proline interaction. In addition, proline stereoelectronic effects can modulate cis-trans isomerism by an additional 1.0 kcal/mol. The aromatic-proline interaction is enthalpic, consistent with its description as a CH/π interaction. Proline-aromatic sequences can also promote cis-prolyl bonds, either through interactions of the aromatic ring with the preceding cis-proline or with the Hα prior to cis-proline. Within proline-rich peptides, sequences commonly found in natively disordered proteins, aromatic residues promote multiple cis-amide bonds due to multiple favorable aromatic-proline interactions. Collectively, we found aromatic-proline interactions to be significantly CH/π in nature, tunable by aromatic electronics. We discuss these data in the context of aromatic-proline and aromatic-glycine interactions in local structure, in tertiary structure, in protein-protein interactions, and in protein assemblies. © 2012 American Chemical Society. Source


Patent
University of Delaware and University of Massachusetts Amherst | Date: 2014-03-31

The present invention provides a renewable route to para-xylene via cycloaddition of ethylene and 2,5-dimethylfuran and subsequent dehydration with high selectivity and high yields using acidic heterogeneous catalysts and a solvent for 2,5-dimethylfuran. The use of a solvent shows significant effects in the reduction of competing side reactions including hydrolysis of 2,5-dimethylfuran to 2,5-hexanedione, alkylation of p-xylene, and polymerization of 2,5-hexanedione.


Patent
Rice University and University of Delaware | Date: 2014-06-16

Implantable modular hydrogels to aid in salivary gland restoration and associated methods are provided. In one embodiment, the present disclosure provides for a hydrogel network comprising: a hyaluronic acid macromer crosslinked with a multiblock copolymer.


Patent
University of Delaware | Date: 2015-01-08

Copolymers useful as components of polymer electrolytes are provided in which the copolymer comprises at least one block sequence represented by formula (I): wherein A is a vinyl aromatic block, T is a tapered copolymer region copolymerized from a vinyl aromatic monomer and an oligo(oxyalkylene) acrylate monomer and B is an oligo(oxyalkylene) acrylate block.

Discover hidden collaborations