Chicago, IL, United States

University of Chicago

www.uchicago.edu
Chicago, IL, United States

The University of Chicago is a private research university in Chicago, Illinois.Founded by the American Baptist Education Society with a donation from oil magnate and philanthropist John D. Rockefeller, the University of Chicago was incorporated in 1890; William Rainey Harper became the university's first president in 1891, and the first classes were held in 1892. Both Harper and future president Robert Maynard Hutchins advocated for Chicago's curriculum to be based upon theoretical and perennial issues rather than applied science and commercial utility.The university consists of the College of the University of Chicago, various graduate programs and interdisciplinary committees organized into four divisions, six professional schools, and a school of continuing education. Chicago is particularly well known for its professional schools, which include the Pritzker School of Medicine, the Booth School of Business, the Law School, and the Divinity School. The university enrolls approximately 5,000 students in the College and about 15,000 students overall.University of Chicago scholars have played a major role in the development of various academic disciplines, including: the Chicago school of economics, the Chicago school of sociology, the law and economics movement in legal analysis, the Chicago school of literary criticism, the Chicago school of religion, the school of political science known as behavioralism, and in the physics leading to the world's first man-made, self-sustaining nuclear reaction. The university is also home to the University of Chicago Press, the largest university press in the United States.The University of Chicago is home to many prominent alumni. 89 Nobel laureates have been affiliated with the university as visiting professors, students, faculty, or staff, the fourth most of any institution in the world. When its affiliate, the Marine Biological Laboratory, is included, Chicago has produced more Nobel prize winners than any other university in the world. In addition, Chicago's alumni include 49 Rhodes Scholars, 9 Fields Medalists, 20 National Humanities Medalists and 13 billionaire graduates. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
Salix Pharmaceuticals and University of Chicago | Date: 2017-08-23

Presented herein are methods for preventing or treating tumor growth, tumor metastasis and/or abnormal proliferation of tumor cells in a subject, wherein the methods involve administration of a pharmaceutical composition comprising methylnaltrexone. Also presented herein are methods for inhibiting or slowing the growth of a tumor in a subject, wherein the methods include selecting a subject who is a suitable candidate for treatment with methylnaltrexone, and administering a composition comprising methylnaltrexone to the subject.


Embodiments of the invention are directed to the treatment of subjects with prostate cancer, in particular those with castration resistant prostate cancer, with a glucocorticoid receptor antagonist and an androgen receptor antagonist. The prostate cancer may be one that has become resistant to androgen deprivation therapy, for example, by increase in glucocorticoid receptor expression and/or activity.


Patent
Salix Pharmaceuticals and University of Chicago | Date: 2017-04-03

Presented herein are methods for preventing or treating tumor growth, tumor metastasis and/or abnormal proliferation of tumor cells in a subject, wherein the methods involve administration of a pharmaceutical composition comprising methylnaltrexone. Also presented herein are methods for inhibiting or slowing the growth of a tumor in a subject, wherein the methods include selecting a subject who is a suitable candidate for treatment with methylnaltrexone, and administering a composition comprising methylnaltrexone to the subject.


Embodiments of the invention are directed to methods of determining the prognosis of a breast cancer patient by evaluating the activity of the glucocorticoid receptor in tumor cells. Other embodiment include methods of treating breast cancer cells, particularly, chemo-resistant cells, with a glucocorticoid receptor antagonist and an anticancer agent or compound.


Patent
University of Chicago | Date: 2016-08-26

A computing device determines a contrast medium uptake time using magnetic resonance imaging data. Image data constructed from data generated by a magnetic resonance imaging (MRI) machine of a subject is read. A representation computed from the read image data is presented on a display device. Baseline artery locations identified within the presented representation that are associated with a baseline artery are received. A first time-of-arrival (TOA) of contrast medium into the baseline artery is determined using the received baseline artery locations and the read image data. For a plurality of locations within the read image data excluding the baseline artery locations, a second TOA of the contrast medium into a respective location relative to the determined first TOA is determined using the read image data, and the determined second TOA is stored in association with the respective location to assist in lesion identification for the subject.


Patent
University of Chicago and Wisconsin Alumni Research Foundation | Date: 2016-07-20

Provided herein are methods of directed self-assembly (DSA) on atomic layer chemical patterns and related compositions. The atomic layer chemical patterns may be formed from two-dimensional materials such as graphene. The atomic layer chemical patterns provide high resolution, low defect directed self-assembly. For example, DSA on a graphene pattern can be used achieve ten times the resolution of DSA that is achievable on a three-dimensional pattern such as a polymer brush. Assembly of block copolymers on the atomic layer chemical patterns may also facilitate subsequent etch, as the atomic layer chemical patterns are easier to etch than conventional pattern materials.


Patent
University of Chicago | Date: 2016-11-16

Embodiments of the invention provide methods of treating a disorder or disease characterized by cellular proliferation and migration by co-administering a synergistically effective amount of an mTOR inhibitor and a -opioid receptor antagonist.


Patent
University of Chicago | Date: 2017-08-23

Methods and compositions are provided concerning polypeptides with modifications that increase its binding affinity for the Fab region of an antibody. Methods include using the polypeptides for isolating, detecting, purifying, measuring and quantifying Fab polypeptides. Other embodiments concern kits, compositions, and solid supports containing the polypeptides and for using the polypeptides for isolating, detecting, purifying, measuring and quantifying Fab polypeptide.


The present disclosure provides novel compounds, including compounds that bind to potassium channels, methods for their manufacture, and methods for their use, including their use to diagnose and/or assess traumatic brain injury and use to treat dymeylinating diseases, and/or in vivo imaging of the central neverous system, and to diagnose and/or assess the progression of MS or other diseases.


Dauphas N.,University of Chicago
Nature | Year: 2017

The Earth formed by accretion of Moon-to Mars-size embryos coming from various heliocentric distances. The isotopic nature of these bodies is unknown. However, taking meteorites as a guide, most models assume that the Earth must have formed from a heterogeneous assortment of embryos with distinct isotopic compositions. High-precision measurements, however, show that the Earth, the Moon and enstatite meteorites have almost indistinguishable isotopic compositions. Models have been proposed that reconcile the Earth-Moon similarity with the inferred heterogeneous nature of Earth-forming material, but these models either require specific geometries for the Moon-forming impact or can explain only one aspect of the Earth-Moon similarity (that is, 17 O). Here I show that elements with distinct affinities for metal can be used to decipher the isotopic nature of the Earth's accreting material through time. I find that the mantle signatures of lithophile O, Ca, Ti and Nd, moderately siderophile Cr, Ni and Mo, and highly siderophile Ru record different stages of the Earth's accretion; yet all those elements point to material that was isotopically most similar to enstatite meteorites. This isotopic similarity indicates that the material accreted by the Earth always comprised a large fraction of enstatite-type impactors (about half were E-type in the first 60 per cent of the accretion and all of the impactors were E-type after that). Accordingly, the giant impactor that formed the Moon probably had an isotopic composition similar to that of the Earth, hence relaxing the constraints on models of lunar formation. Enstatite meteorites and the Earth were formed from the same isotopic reservoir but they diverged in their chemical evolution owing to subsequent fractionation by nebular and planetary processes. © 2017 Macmillan Publishers Limited. All rights reserved.

Loading University of Chicago collaborators
Loading University of Chicago collaborators