University of CaliforniaIrvine

University, United States

University of CaliforniaIrvine

University, United States
SEARCH FILTERS
Time filter
Source Type

Nasrollahi N.,University of CaliforniaIrvine | Aghakouchak A.,University of CaliforniaIrvine | Cheng L.,University of CaliforniaIrvine | Damberg L.,University of CaliforniaIrvine | And 3 more authors.
Water Resources Research | Year: 2015

Assessing the uncertainties and understanding the deficiencies of climate models are fundamental to developing adaptation strategies. The objective of this study is to understand how well Coupled Model Intercomparison-Phase 5 (CMIP5) climate model simulations replicate ground-based observations of continental drought areas and their trends. The CMIP5 multimodel ensemble encompasses the Climatic Research Unit (CRU) ground-based observations of area under drought at all time steps. However, most model members overestimate the areas under extreme drought, particularly in the Southern Hemisphere (SH). Furthermore, the results show that the time series of observations and CMIP5 simulations of areas under drought exhibit more variability in the SH than in the Northern Hemisphere (NH). The trend analysis of areas under drought reveals that the observational data exhibit a significant positive trend at the significance level of 0.05 over all land areas. The observed trend is reproduced by about three-fourths of the CMIP5 models when considering total land areas in drought. While models are generally consistent with observations at a global (or hemispheric) scale, most models do not agree with observed regional drying and wetting trends. Over many regions, at most 40% of the CMIP5 models are in agreement with the trends of CRU observations. The drying/wetting trends calculated using the 3 months Standardized Precipitation Index (SPI) values show better agreement with the corresponding CRU values than with the observed annual mean precipitation rates. Pixel-scale evaluation of CMIP5 models indicates that no single model demonstrates an overall superior performance relative to the other models. © 2015. American Geophysical Union. All Rights Reserved.


Shrivastava M.,Pacific Northwest National Laboratory | Zhao C.,Pacific Northwest National Laboratory | Easter R.C.,Pacific Northwest National Laboratory | Qian Y.,Pacific Northwest National Laboratory | And 4 more authors.
Journal of Advances in Modeling Earth Systems | Year: 2016

We investigate the sensitivity of secondary organic aerosol (SOA) loadings simulated by a regional chemical transport model to seven selected model parameters using a modified volatility basis-set (VBS) approach: four involving emissions of anthropogenic and biogenic volatile organic compounds, anthropogenic semivolatile and intermediate volatility organics (SIVOCs), and NOx; two involving dry deposition of SOA precursor gases, and one involving particle-phase transformation of SOA to low volatility. We adopt a quasi-Monte Carlo sampling approach to effectively sample the high-dimensional parameter space, and perform a 250 member ensemble of simulations using a regional model, accounting for some of the latest advances in SOA treatments based on our recent work. We then conduct a variance-based sensitivity analysis using the generalized linear model method to study the responses of simulated SOA loadings to the model parameters. Analysis of SOA variance from all 250 simulations shows that the volatility transformation parameter, which controls whether or not SOA that starts as semivolatile is rapidly transformed to nonvolatile SOA by particle-phase processes such as oligomerization and/or accretion, is the dominant contributor to variance of simulated surface-level daytime SOA (65% domain average contribution). We also split the simulations into two subsets of 125 each, depending on whether the volatility transformation is turned on/off. For each subset, the SOA variances are dominated by the parameters involving biogenic VOC and anthropogenic SIVOC emissions. Furthermore, biogenic VOC emissions have a larger contribution to SOA variance when the SOA transformation to nonvolatile is on, while anthropogenic SIVOC emissions have a larger contribution when the transformation is off. NOx contributes less than 4.3% to SOA variance, and this low contribution is mainly attributed to dominance of intermediate to high NOx conditions throughout the simulated domain. However, we note that SOA yields have a more complex nonlinear dependence on NOx levels, which needs to be addressed by more integrated model-measurement approaches focused on gaining a better process-level understanding of anthropogenic-biogenic interactions. The two parameters related to dry deposition of SOA precursor gases also have very low contributions to SOA variance. This study highlights the large sensitivity of SOA loadings to the particle-phase processes such as oligomerization that rapidly cause large decrease in the volatility of SOA, which is neglected in most previous models. © 2016. The Authors.


Arshadi M.,University of Colorado BoulderBoulder | Rajaram H.,University of Colorado BoulderBoulder | Detwiler R.L.,University of CaliforniaIrvine | Jones T.,University of CaliforniaIrvine
Water Resources Research | Year: 2015

Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. We present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were quantified for each experiment. The integrated mass transfer rate from the TCE phase for all experiments exhibited three time regimes: an early-time regime with slower mass transfer rates limited by low specific interfacial area; an intermediate-time regime with higher mass transfer rates resulting from breakup of large TCE blobs, which greatly increases specific interfacial area; and a late-time regime with low mass transfer rates due to the deposition of MnO2 precipitates. In two experiments, mass balance analyses suggested that TCE mass removal rates exceeded the maximum upper bound mass removal rates derived by assuming that oxidation and dissolution are the only mechanisms for TCE mass removal. We propose incomplete oxidation by permanganate and TCE solubility enhancement by intermediate reaction products as potential mechanisms to explain this behavior. We also speculate that some intermediate reaction products with surfactant-like properties may play a role in lowering the TCE-water interfacial tension, thus causing breakup of large TCE blobs. Our quantitative experimental measurements will be useful in the context of developing accurate computational models for chemical oxidation of TCE in fractures. © 2015. American Geophysical Union.

Loading University of CaliforniaIrvine collaborators
Loading University of CaliforniaIrvine collaborators