Entity

Time filter

Source Type

Berkeley, CA, United States

The University of California, Berkeley , is a public research university located in Berkeley, California. According to the 2014 Academic Ranking of World Universities, the University of California, Berkeley is the fourth best university in the world. It is the most selective – and highest ranked in U.S. News and ARWU – public university in the world for undergraduate education. Aside from its academic prestige, UC Berkeley is also well known for producing a high number of entrepreneurs.The university occupies 1,232 acres on the eastern side of the San Francisco Bay with the central campus resting on 178 acres . Berkeley is the flagship institution of the 10 campus University of California system and one of only two UC campuses operating on a semester calendar, the other being UC Merced.Established in 1868 as the result of the merger of the private College of California and the public Agricultural, Mining, and Mechanical Arts College in Oakland, Berkeley is the oldest institution in the UC system and offers approximately 350 undergraduate and graduate degree programs in a wide range of disciplines. The University of California has been charged with providing both "classical" and "practical" education for the state's people. Cal co-manages three United States Department of Energy National Laboratories, including the Los Alamos National Laboratory, Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory for the U.S. Department of Energy.Berkeley faculty, alumni, and researchers have won 72 Nobel Prizes , 9 Wolf Prizes, 7 Fields Medals, 18 Turing Awards, 45 MacArthur Fellowships, 20 Academy Awards, and 11 Pulitzer Prizes. To date, UC Berkeley scientists have discovered 6 chemical elements of the periodic table . Along with Berkeley Lab, UC Berkeley researchers have discovered 16 chemical elements in total – more than any other university in the world. Berkeley is a founding member of the Association of American Universities and continues to have very high research activity with $730.7 million in research and development expenditures in the fiscal year ending June 30, 2014. Berkeley physicist J. Robert Oppenheimer was the scientific director of the Manhattan Project that developed the first atomic bomb in the world, which he personally headquartered at Los Alamos, New Mexico, during World War II. Faculty member Edward Teller was the "father of the hydrogen bomb". Former United States Secretary of Energy and Nobel laureate Steven Chu , was Director of Berkeley Lab, 2004–2009.The athletic teams at UC Berkeley are known as the California Golden Bears and are members of both the Pacific-12 Conference and the Mountain Pacific Sports Federation in the NCAA. Wikipedia.


Guzman M.G.,University of California at Berkeley
Lancet | Year: 2015

Dengue viruses have spread rapidly within countries and across regions in the past few decades, resulting in an increased frequency of epidemics and severe dengue disease, hyperendemicity of multiple dengue virus serotypes in many tropical countries, and autochthonous transmission in Europe and the USA. Today, dengue is regarded as the most prevalent and rapidly spreading mosquito-borne viral disease of human beings. Importantly, the past decade has also seen an upsurge in research on dengue virology, pathogenesis, and immunology and in development of antivirals, vaccines, and new vector-control strategies that can positively impact dengue control and prevention. Copyright © 2015 Elsevier Ltd. All rights reserved. Source


Rabosky D.L.,University of California at Berkeley
Nature communications | Year: 2013

Several evolutionary theories predict that rates of morphological change should be positively associated with the rate at which new species arise. For example, the theory of punctuated equilibrium proposes that phenotypic change typically occurs in rapid bursts associated with speciation events. However, recent phylogenetic studies have found little evidence linking these processes in nature. Here we demonstrate that rates of species diversification are highly correlated with the rate of body size evolution across the 30,000+ living species of ray-finned fishes that comprise the majority of vertebrate biological diversity. This coupling is a general feature of fish evolution and transcends vast differences in ecology and body-plan organization. Our results may reflect a widespread speciational mode of character change in living fishes. Alternatively, these findings are consistent with the hypothesis that phenotypic 'evolvability'-the capacity of organisms to evolve-shapes the dynamics of speciation through time at the largest phylogenetic scales. Source


Komeili A.,University of California at Berkeley
FEMS Microbiology Reviews | Year: 2012

Magnetotactic bacteria (MB) are remarkable organisms with the ability to exploit the earth's magnetic field for navigational purposes. To do this, they build specialized compartments called magnetosomes that consist of a lipid membrane and a crystalline magnetic mineral. These organisms have the potential to serve as models for the study of compartmentalization as well as biomineralization in bacteria. Additionally, they offer the opportunity to design applications that take advantage of the particular properties of magnetosomes. In recent years, a sustained effort to identify the molecular basis of this process has resulted in a clearer understanding of the magnetosome formation and biomineralization. Here, I present an overview of MB and explore the possible molecular mechanisms of membrane remodeling, protein sorting, cytoskeletal organization, iron transport, and biomineralization that lead to the formation of a functional magnetosome organelle. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. Source


Lisch D.,University of California at Berkeley
Nature Reviews Genetics | Year: 2013

For decades, transposable elements have been known to produce a wide variety of changes in plant gene expression and function. This has led to the idea that transposable element activity has played a key part in adaptive plant evolution. This Review describes the kinds of changes that transposable elements can cause, discusses evidence that those changes have contributed to plant evolution and suggests future strategies for determining the extent to which these changes have in fact contributed to plant adaptation and evolution. Recent advances in genomics and phenomics for a range of plant species, particularly crops, have begun to allow the systematic assessment of these questions. © 2013 Macmillan Publishers Limited. Source


Bachtrog D.,University of California at Berkeley
Nature Reviews Genetics | Year: 2013

The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome. © 2013 Macmillan Publishers Limited. All rights reserved. Source

Discover hidden collaborations