Entity

Time filter

Source Type

Bremen, Germany

The University of Bremen is one of 11 institutions classed as an "Elite university" in Germany, and a university of approximately 23,500 people from 126 countries that are studying, teaching, researching, and working in Bremen. It has become the science center of North West Germany.The university has most notably reputation in political science, industrial engineering, digital media, physics, mathematics, microbiology, geoscience , and European law.Its commitment was rewarded with the title “Stadt der Wissenschaft 2005” , which science, politics, business and culture won jointly for Bremen and Bremerhaven, by the Foundation for German Science .Some of the paths that were taken back then, also referred to as the "Bremen model", have since become characteristics of modern universities, such as interdisciplinary, explorative learning, social relevance to practice-oriented project studies which enjoy a high reputation in the academic world as well as in business and industry. Other reform approaches of the former ‘new university’ have proven to be errors such as waiving a mid-level faculty, tripartite representation or too “student-friendly” examination regulations and were given up in Bremen a few years down the track. Wikipedia.


Peixoto T.P.,University of Bremen
Physical Review Letters | Year: 2013

We investigate the detectability of modules in large networks when the number of modules is not known in advance. We employ the minimum description length principle which seeks to minimize the total amount of information required to describe the network, and avoid overfitting. According to this criterion, we obtain general bounds on the detectability of any prescribed block structure, given the number of nodes and edges in the sampled network. We also obtain that the maximum number of detectable blocks scales as √N, where N is the number of nodes in the network, for a fixed average degree âŸ̈k⟩. We also show that the simplicity of the minimum description length approach yields an efficient multilevel Monte Carlo inference algorithm with a complexity of O(τNlogâ¡N), if the number of blocks is unknown, and O(τN) if it is known, where τ is the mixing time of the Markov chain. We illustrate the application of the method on a large network of actors and films with over 106 edges, and a dissortative, bipartite block structure. © 2013 American Physical Society. Source


Peixoto T.P.,University of Bremen
Physical Review Letters | Year: 2013

A large variety of dynamical processes that take place on networks can be expressed in terms of the spectral properties of some linear operator which reflects how the dynamical rules depend on the network topology. Often, such spectral features are theoretically obtained by considering only local node properties, such as degree distributions. Many networks, however, possess large-scale modular structures that can drastically influence their spectral characteristics and which are neglected in such simplified descriptions. Here, we obtain in a unified fashion the spectrum of a large family of operators, including the adjacency, Laplacian, and normalized Laplacian matrices, for networks with generic modular structure, in the limit of large degrees. We focus on the conditions necessary for the merging of the isolated eigenvalues with the continuous band of the spectrum, after which the planted modular structure can no longer be easily detected by spectral methods. This is a crucial transition point which determines when a modular structure is strong enough to affect a given dynamical process. We show that this transition happens in general at different points for the different matrices, and hence the detectability threshold can vary significantly, depending on the operator chosen. Equivalently, the sensitivity to the modular structure of the different dynamical processes associated with each matrix will be different, given the same large-scale structure present in the network. Furthermore, we show that, with the exception of the Laplacian matrix, the different transitions coalesce into the same point for the special case where the modules are homogeneous but separate otherwise. © 2013 American Physical Society. Source


Dupont L.,University of Bremen
Quaternary Science Reviews | Year: 2011

Palynological records of Middle and Late Pleistocene marine sediments off African shores is reviewed in order to reveal long-term patterns of vegetation change during climate cycles. Whether the transport of pollen and spores from the source areas on the continent to the ocean floor is mainly by wind or predominantly by rivers depends on the region. Despite the differences in transportation, accumulation rates in the marine sediments decline exponentially with distance to the shore. The marine sediments provide well-dated records presenting the vegetation history of the main biomes of western and southern Africa. The extent of different biomes varied with the climate changes of the glacial interglacial cycle. The Mediterranean forest area expanded during interglacials, the northern Saharan desert during glacials, and the semi-desert area in between during the transitions. In the sub-Saharan mountains ericaceous scrubland spread mainly during glacials and the mountainous forest area often increased during intermediate periods. Savannahs extended or shifted to lower latitudes during glacials. While the representation of the tropical rain forest fluctuated with summer insolation and precession, that of the subtropical biomes showed more obliquity variability or followed the pattern of glacial and interglacials. © 2011 Elsevier Ltd. Source


Alexandrov T.,University of Bremen
BMC bioinformatics | Year: 2012

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) imaging mass spectrometry, also called MALDI-imaging, is a label-free bioanalytical technique used for spatially-resolved chemical analysis of a sample. Usually, MALDI-imaging is exploited for analysis of a specially prepared tissue section thaw mounted onto glass slide. A tremendous development of the MALDI-imaging technique has been observed during the last decade. Currently, it is one of the most promising innovative measurement techniques in biochemistry and a powerful and versatile tool for spatially-resolved chemical analysis of diverse sample types ranging from biological and plant tissues to bio and polymer thin films. In this paper, we outline computational methods for analyzing MALDI-imaging data with the emphasis on multivariate statistical methods, discuss their pros and cons, and give recommendations on their application. The methods of unsupervised data mining as well as supervised classification methods for biomarker discovery are elucidated. We also present a high-throughput computational pipeline for interpretation of MALDI-imaging data using spatial segmentation. Finally, we discuss current challenges associated with the statistical analysis of MALDI-imaging data. Source


Climate variability is driven by a complex interplay of global-scale processes and our understanding of them depends on sufficient temporal resolution of the geologic records and their precise inter-regional correlation, which in most cases cannot be obtained with biostratigraphic methods alone. Chemostratigraphic correlation based on bulk sediment carbon isotopes is increasingly used to facilitate high-resolution correlation over large distances, but complications arise from a multitude of possible influences from local differences in biological, diagenetic and physico-chemical factors on individual δ13C records that can mask the global signal. To better assess the global versus local contribution in a δ13C record it is necessary to compare numerous isotopic records on a global scale. As a contribution to this objective, this paper reviews bulk sediment δ13Ccarb records from the Late Cretaceous in order to identify differences and similarities in secular δ13C trends that help establish a global reference δ13C record for this period. The study presents a global-scale comparison of twenty δ13C records from sections representing various palaeo-latitudes in both hemispheres and different oceanic settings from the Boreal, Tethys, Western Interior, Indian Ocean and Pacific Ocean, and with various diagenetic overprinting. The isotopic patterns are correlated based on independent dating with biostratigraphic and paleomagnetic data and reveal good agreement of the major isotope events despite offsets in absolute δ13C values and variation in amplitude between the sites. These differences reflect the varying local influences e.g. from depositional settings, bottom water age and diagenetic history, whereas the concordant patterns in δ13C shifts might represent δ13C fluctuations in the global seawater dissolved inorganic carbon. The latter is modulated by variations in organic matter burial relative to re-mineralization, in the global-scale formation of authigenic carbonate, and in partitioning of carbon between organic carbon and carbonate sinks. These variations are mainly controlled by changes in climate and eustasy. Additionally, some globally synchronous shifts in the bulk δ13Ccarb records could result from parallel variation in the contribution of authigenic carbonate to the sediment. Formation of these cements through biologically mediated early diagenetic processes is related to availability of oxygen and organic material and, thus, can be globally synchronized by fluctuations in eustasy, atmospheric and oceanic oxygen levels or in large-scale oceanic circulation. Because the influence of early diagenetic cements on the bulk δ13Ccarb signal can, but need not be synchronized, chemostratigraphy should not be used as a stand-alone method for trans-continental correlation, and especially minor isotopic shifts have to be interpreted with utmost care. Nevertheless, the observed consistency of the δ13C correlations confirms global scale applicability of bulk sediment δ13C chemostratigraphy for the Late Cretaceous, including sediments that underwent lithification and burial diagenesis such as the sediments from the Himalayan and Alpine sections. Limitations arise from increased uncertainties (1) in sediments with very low carbonate content, (2) from larger δ13C variability in sediments from very shallow marine environments, (3) from unrecognized hiatuses or strong changes in sedimentation rates, and (4) in sections with short stratigraphic coverage or with few biostratigraphic marker horizons.The combination of chemostratigraphy with biostratigraphy and magnetostratigraphy substantially increases the precision and temporal resolution of inter-regional correlations and helps overcome problems that arise from differences in biostratigraphic schemes, facies or provincialism of key fossils. By using an iterative approach to stepwise increase precision of the correlations, isochroneity of first and last occurrences of marker species versus chemostratigraphy is tested, which helps to improve biostratigraphic zonations, to assess zonal boundary ages and to identify useful criteria for defining Late Cretaceous stage boundaries, many of which are still not formally defined. The presented correlations indicate a consistent position for most planktic foraminifer zonal boundaries relative to corresponding isotope shifts during the mid-Cretaceous sea-level high, whereas diachroneity appears to be more pronounced during the Late Campanian and Maastrichtian global sea-level fall. A similar pattern is observed for trans-continental consistency in the δ13C shifts. Graphic correlation of isotopic shifts, magnetostratigraphic and biostratigraphic events among the compared sections is used to detect hiatuses or relative changes sediment accumulation rates and visualizes consistency or offsets of individual biostratigraphic markers relative to chemo- and magnetostratigraphy. Finally, an attempt of a global average δ13C stack is presented for the Turonian through Maastrichtian. © 2013 Elsevier B.V. Source

Discover hidden collaborations