Entity

Time filter

Source Type

Bradford, United Kingdom

The University of Bradford is a public, plate glass university located in the city of Bradford, West Yorkshire, England. The university received its Royal Charter in 1966, making it the 40th university to be created in Britain, but its origins date back to the early 19th century. There are two campuses: the main campus located on Richmond Road and the School of Management, at Emm Lane.The student population includes 10,525 undergraduate and 3,050 postgraduate students. Mature students make up around a third of the undergraduate community. 22% of students are foreign, and come from over 110 different countries. There were 14,406 applications to the university through UCAS in 2010, of which 3,421 were accepted.It was the first British university to establish a Department of Peace Studies in 1973, which is currently the world's largest university centre for the study of peace and conflict. The division has a reputation as a centre of excellence in peace research, international relations, security studies, conflict resolution and development and peace studies. Wikipedia.


McIlhagga W.,University of Bradford
International Journal of Computer Vision | Year: 2011

Canny (IEEE Trans. Pattern Anal. Image Proc. 8(6):679-698, 1986) suggested that an optimal edge detector should maximize both signal-to-noise ratio and localization, and he derived mathematical expressions for these criteria. Based on these criteria, he claimed that the optimal step edge detector was similar to a derivative of a gaussian. However, Canny's work suffers from two problems. First, his derivation of localization criterion is incorrect. Here we provide a more accurate localization criterion and derive the optimal detector from it. Second, and more seriously, the Canny criteria yield an infinitely wide optimal edge detector. The width of the optimal detector can however be limited by considering the effect of the neighbouring edges in the image. If we do so, we find that the optimal step edge detector, according to the Canny criteria, is the derivative of an ISEF filter, proposed by Shen and Castan (Graph. Models Image Proc. 54:112-133, 1992). In addition, if we also consider detecting blurred (or non-sharp) gaussian edges of different widths, we find that the optimal blurred-edge detector is the above optimal step edge detector convolved with a gaussian. This implies that edge detection must be performed at multiple scales to cover all the blur widths in the image. We derive a simple scale selection procedure for edge detection, and demonstrate it in one and two dimensions. © 2010 Springer Science+Business Media, LLC. Source


Botchkareva N.V.,University of Bradford
Cell Cycle | Year: 2012

Skin development, postnatal growth and regeneration are governed by complex and well-balanced programs of gene activation and silencing. The crosstalk between small non-coding microRNAs (miRNAs) and mRNAs is highly important for steadiness of signal transduction and transcriptional activities as well as for maintenance of homeostasis in many organs, including the skin. Recent data demonstrated that the expression of many genes, including cell type-specific master transcription regulators implicated in the control of skin development and homeostasis, is regulated by miRNAs. In addition, individual miRNAs could mediate the effects of these signaling pathways through being their downstream components. In turn, the expression of a major constituent of the miRNA processing machinery, Dicer, can be controlled by cell type-specific transcription factors, which form negative feedback loop mechanisms essential for the proper execution of cell differentiation- associated gene expression programs and cell-cell communications during normal skin development and regeneration. This review summarizes the available data on how miRNA/mRNA regulatory networks are involved in the control of skin development, epidermal homeostasis, hair cycle-associated tissue remodeling and pigmentation. Understanding of the fundamental mechanisms that govern skin development and regeneration will contribute to the development of new therapeutic approaches for many pathological skin conditions by using miRNA-based interventions. © 2012 Landes Bioscience. Source


Patent
University of Bradford and University of Sichuan | Date: 2011-12-28

Disclosed herein are the methods to improve the electrical conductivity for micro-moulded plastic parts containing carbon nanotubes. The polymer/carbon nanotubes composites suitable for polymer micromoulding including 8099.95 wt % of a polymer pellet or powder, 0-2 wt % of antioxidant, 0-2 wt % of dispersant agent and 0.05-20 wt % of carbon nanotube with a diameter 0.5-200 nm and a length of 200 nm-20 m are firstly prepared through melt extrusion. The plastic microparts are prepared by micromoulding of the polymer/carbon nanotubes composites including micro extrusion, micro injection and hot embossing at optimized processing conditions and then are subject to a post thermal treatment to enhance the electrical conductivity. The post thermal treatment methods include electric heating, microwave, infrared or plasma heating. The methods disclosed can be used to prepare electrical conductive biomedical implanted plastic micro devices for minimally invasive surgery, biomedical sensors, microelectrodes, drug delivery devices, automated pipetting systems, breathing tubes, EMI devices etc.


Patent
Smith & Nephew and University of Bradford | Date: 2012-10-05

The present invention relates to shape memory polymers (SMP) and especially to shape memory polymer containing a water soluble non-reactive plasticiser and to uses thereof.


Patent
University of Bradford | Date: 2013-10-17

The invention provides a method for the production of a metal, the method comprising the steps of mixing an oxide of the metal with a reducing agent comprising a Group II metal or a hydride thereof in the presence of water and/or an organic solvent, heating the mixture of oxide and reducing agent, leaching the resulting material with water; and washing the leached material with a dilute aqueous acid. Typically, the metal is a transition or rare earth metal, the oxide of the metal is an oxide of a transition or rare earth metal, and the reducing agent is selected from calcium or magnesium or the hydrides of calcium and magnesium. The metal is generally obtained at a purity of around 98.5-99.1%, and the method is much quicker than the methods of the prior art and has a much lower carbon footprint, thereby providing an option which is more sustainable, environmentally friendly, and accommodative for industries. Particularly good results are observed in the production of transition metals such as titanium, tantalum and niobium.

Discover hidden collaborations