Entity

Time filter

Source Type

Bologna, Italy

The University of Bologna is a university in Bologna, Italy, founded in 1088. As of 2013 the University's crest carries the motto Alma mater studiorum and the date A.D. 1088. The University has about 85,000 students in its 23 schools. It has branch centres in Imola, Ravenna, Forlì, Cesena and Rimini and a branch center abroad in Buenos Aires. It also has a school of excellence named Collegio Superiore di Bologna. It is recognised as the oldest university in continuous operation, considering that it was the first to use the term universitas for the corporations of students and masters which came to define the institution.The publisher of the University of Bologna is Bononia University Press S.p.A . Wikipedia.


Bandini M.,University of Bologna
Chemical Society Reviews | Year: 2011

Synthetic organic chemistry has been markedly affected by the booming of gold catalysis over the past decade. The renaissance of this coinage metal allowed unprecedented transformations to be realized in a highly selective manner and rendered "old chemistry" more accessible from a practical point of view. Particularly, organic compounds containing C-C multiple bonds benefited from the high carbophilicity of gold species, that opened access to a great chemical diversity through direct and selective π-electrophilic activations. Nowadays, the complexity of naturally occurring compounds based on functionalized aromatic frameworks continues to inspire and influence developments in synthetic chemistry. Furthermore, the ubiquitous presence of arene-based systems in pharmaceuticals, agrochemicals, and functional organic materials warrants the growing demand for mild, selective and sustainable synthetic routes to their preparation. In this context, although the peculiar aptitude of gold salts/complexes for interaction with aromatic compounds (auration process) has long been known, the direct catalytic gold decoration of arenes, has risen to prominence only recently. Here, the extensive use of electrophilic activation of C-C multiple bonds by gold species deserves a prominent mention, and the great strides made in the field over the last few years are described in this tutorial review. © 2011 The Royal Society of Chemistry. Source


Pediatric cytogenetically normal acute myeloid leukemia (CN-AML) is a heterogeneous subgroup of myeloid clonal disorders that do not harbor known mutations. To investigate the mutation spectrum of pediatric CN-AML, we performed whole-transcriptome massively parallel sequencing on blasts from 7 CN-AML pediatric patients. In 3 patients we identified a recurrent cryptic inversion of chromosome 16, encoding a CBFA2T3-GLIS2 fusion transcript. In a validation cohort of 230 pediatric CN-AML samples we identified 17 new cases. Among a total of 20 patients with CBFA2T3-GLIS2 fusion transcript out of 237 investigated (8.4%), 10 patients (50%) did not belong to the French-American-British (FAB) M7 subgroup. The 5-year event-free survival for these 20 children was worse than that for the other CN-AML patients (27.4% vs 59.6%; P = .01). These data suggest that the presence of CBFA2T3-GLIS2 fusion transcript is a novel common feature of pediatric CN-AML, not restricted to the FAB M7 subtype, predicting poorer outcome. Source


In chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia, tyrosine kinase inhibitor (TKI) therapy may select for drug-resistant BCR-ABL mutants. We used an ultra-deep sequencing (UDS) approach to resolve qualitatively and quantitatively the complexity of mutated populations surviving TKIs and to investigate their clonal structure and evolution over time in relation to therapeutic intervention. To this purpose, we performed a longitudinal analysis of 106 samples from 33 patients who had received sequential treatment with multiple TKIs and had experienced sequential relapses accompanied by selection of 1 or more TKI-resistant mutations. We found that conventional Sanger sequencing had misclassified or underestimated BCR-ABL mutation status in 55% of the samples, where mutations with 1% to 15% abundance were detected. A complex clonal texture was uncovered by clonal analysis of samples harboring multiple mutations and up to 13 different mutated populations were identified. The landscape of these mutated populations was found to be highly dynamic. The high degree of complexity uncovered by UDS indicates that conventional Sanger sequencing might be an inadequate tool to assess BCR-ABL kinase domain mutation status, which currently represents an important component of the therapeutic decision algorithms. Further evaluation of the clinical usefulness of UDS-based approaches is warranted. Source


Patent
University of Bologna | Date: 2013-05-28

PA2UNIBO Sweet Lorenz is a novel cherry tree of the genus/species


Patent
University of Bologna | Date: 2013-05-28

Variety Denomination PA1UNIBO, named Sweet Aryana, is a novel cherry tree derived from a seedling of unknown cross which was planted at Vignola, Modena Province, Italy. The genus and species (cultivar) of PA1UNIBO is

Discover hidden collaborations