Antwerp, Belgium
Antwerp, Belgium

The University of Antwerp is one of the major Belgian universities located in the city of Antwerp. The name is abbreviated as UAntwerp, but sometimes as UA.As of 2014, the University of Antwerp ranks as 170th globally according to Times Higher Education, 205th according to QS World University Rankings and between the 301 and 400th place according to the Academic Ranking of World Universities. Wikipedia.


Time filter

Source Type

Provided herein are filtration membranes for water treatment, and methods for preventing fouling of such membranes. The method described herein comprises grafting the membrane surface with an organic moiety, by reacting the surface with an organometallic reagent, a phosphonate, a phosphinate, or an organosilane.


Patent
University of Antwerp | Date: 2015-04-15

The present invention relates to the treatment of kidney diseases, both acute and chronic. The invention in particular relates to the use of neuregulins for preventing, treating or delaying kidney diseases.


Grant
Agency: Cordis | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

Understanding the human brain is one of the greatest scientific challenges of our time. Such an understanding can provide profound insights into our humanity, leading to fundamentally new computing technologies, and transforming the diagnosis and treatment of brain disorders. Modern ICT brings this prospect within reach. The HBP Flagship Initiative (HBP) thus proposes a unique strategy that uses ICT to integrate neuroscience data from around the world, to develop a unified multi-level understanding of the brain and diseases, and ultimately to emulate its computational capabilities. The goal is to catalyze a global collaborative effort. During the HBPs first Specific Grant Agreement (SGA1), the HBP Core Project will outline the basis for building and operating a tightly integrated Research Infrastructure, providing HBP researchers and the scientific Community with unique resources and capabilities. Partnering Projects will enable independent research groups to expand the capabilities of the HBP Platforms, in order to use them to address otherwise intractable problems in neuroscience, computing and medicine in the future. In addition, collaborations with other national, European and international initiatives will create synergies, maximizing returns on research investment. SGA1 covers the detailed steps that will be taken to move the HBP closer to achieving its ambitious Flagship Objectives.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 3.87M | Year: 2017

Is there a crisis in the legitimacy of the European Union? That research question is timely and important. Investigating it is also an ideal way of training research leaders of tomorrow to rethink our assumptions about the study of legitimate political order. Whilst, however, the financial crisis has raised new questions about the legitimacy of the EU, existing theories of legitimacy crises are largely based on single-state political systems. New theory is, therefore, needed to understand what would count as legitimacy crises in the case of a non-state political system such as the EU. PLATOs (The Post-Crisis Legitimacy of the EU) ESRs will work together as a team to build new theory from 15 investigations into different standards and actors with whom the EU may need to be legitimate. ESRs will go well beyond the state-of-the-art by building a theory of legitimacy crisis in the EU from a uniquely interdisciplinary understanding of how democracy, power, law, economies and societies all fit together with institutions within and beyond the state to affect the legitimacy of contemporary political order. By developing the analytical tools needed to understand a core predicament in which the EU may both need to develop legitimate forms of political power beyond the state and find those forms of power hard to achieve, PLATO will train ESRs with the conceptual clarity needed to define new research questions at the very frontiers of their disciplines and the methodological skills needed to research those questions. They will also be prepared for careers in the non-academic sector (policy-advice, consulting, civil society, European institutions and expert bodies). PLATOs ambitious cross-university, cross-country and cross-sectoral programme of research training, supervision and secondments will pool resources from a unique network of 9 research-intensive universities and 11 non-academic partners who are themselves key users of state-of-the-art social science research.


To date, three way catalytic converters (TWCs) have been established as the most effective engine exhaust after-treatment system. However, TWCs not only fail to address the issue of particulate matter (PM) emissions but are also the main industrial consumer of Critical Raw Materials (CRMs) mainly Platinum Group Metals (PGMs) and Rare Earth elements (REEs), with the automotive industry accounting for 65%-80% of total EU PGMs demand. The enforcement of new limits on PM emissions (EURO 6c/7) will require higher TWC performance, hence leading to further increase the CRMs content in autocatalysts. Addressing the necessity of CRMs reduction in catalysis, PARTIAL-PGMs proposes an integrated approach for the rational design of innovative nanostructured materials of low/zero PGMs/REEs content for a hybrid TWC/Gasoline Particulate Filter (GPF) for automotive emissions after-treatment with continuous particulates combustion also focusing on identifying and fine-tuning the parameters involved in their preparation, characterization and performance evaluation under realistic conditions. PARTIAL-PGMs approach is broad, covering multiscale modeling, synthesis and nanomaterials characterization, performance evaluation under realistic conditions as well as recyclability, health impact analysis and Life Cycle Assessment. The rational synthesis of nanomaterials to be used in these hybrid systems will allow for a reduction of more than 35% in PGMs and 20% in REEs content, either by increasing performance or by their replacement with transition metals. The compact nature of the new hybrid system not only will allow its accommodation in smaller cars but will also reduce cold start emissions and light-off times with performance aiming to anticipate both future emission control regulations and new advances in engines technology. Such R&D progress in autocatalysts is expected to pave the way to the widespread use of such low CRMs content materials in other catalytic applications.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SC1-PM-04-2016 | Award Amount: 9.71M | Year: 2017

The projects overall aim is to improve the health, development and quality of life of children and adults born very preterm (VPT, < 32 weeks of gestation) or very low birth weight (VLBW, < 1500g) approximately 50 000 births each year in Europe by establishing an ICT platform to integrate, harmonise and exploit the wealth of data from 20 European cohorts of VPT/VLBW children and adults and their families constituted from the early 1980s to the present, together with data from national registries. VPT/VLBW births have higher risks of cerebral palsy, visual and auditory deficits, impaired cognitive ability, psychiatric disorders and social problems than infants born at term and account for more than a third of the health and educational budgets for children. They may also face higher risks of non-communicable disease as they age. There is emerging evidence of reduced mental health, quality of life, partnering, family life and employment chances and wealth in adulthood. The platform will enable stratified sub-group analyses of sociodemographic and clinical characteristics, neonatal complications, and otherwise rare medical conditions that cannot be studied in national population cohorts. The broad temporal, geographic, cultural and health system diversity makes it possible to study the impact of socioeconomic and organisational contexts and determine the generalisability of outcomes for VPT/VLBW populations. The RECAP platform creates a value chain to promote research and innovation using population cohorts, beginning with the integration of VPT/VLBW cohorts to the translation and dissemination of new knowledge. It will be based on a sustainable governance framework, state-of-the art data management and sharing technologies, tools to strengthen research capacity, a hypothesis-driven research agenda and broad stakeholder participation, including researchers, clinicians, educators, policy makers and very preterm children and adults and their families.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-RISE | Phase: MSCA-RISE-2016 | Award Amount: 1.01M | Year: 2017

The overall vision of INTERWASTE is to develop scientific understanding of issues related to environmental contamination with toxic organic chemicals (specifically flame retardants (FRs) and pharmaceutical and personal care products (PPCPs)) arising from their presence in the waste stream. Specific research objectives include: (a) exchange of knowledge of and best practice in methods for rapid and cost-effective identification of waste items containing restricted FRs; (b) developing scientific understanding of environmental contamination due to processing of waste items containing FRs; and (c) furthering understanding of the sources of PPCPs and FRs in the sewerage system. To facilitate such research on the global level required, INTERWASTE will exchange best practice in the analytical chemistry techniques required to study FRs and PPCPs, and evaluate the measurement capability of INTERWASTE participants via an interlaboratory comparison. INTERWASTEs vision will be achieved via a co-ordinated programme of collaboration and research secondments between world-leading research groups both within and outside the EU; coupled with annual workshops to discuss the latest findings. The research programme will exploit the complementary expertise of the consortium members, and in so doing foster synergies. Cross-sectoral interaction and knowledge sharing will be achieved via the participation of beneficiaries and partner organisations from both academic and non-academic sectors. All secondments and workshops will be conducted within a framework designed to maximise the training and career development benefits to participating staff by providing them with opportunities for knowledge and skills acquisition, with a particular (but not exclusive) focus on early career researchers. INTERWASTEs research and training programme is complemented by communication activities that will both disseminate project findings to scientific stakeholders, and engage the general public.


According to ECDC, over 4 million healthcare-associated infections in the EU cause 37,000 deaths and cost EUR 7 billion/year. Half of them are related to medical devices (i.e., catheters, implants) and 80% of these are related to bacterial biofilms. A recent EC report highlighted the medical device sectors role in driving EU economic growth, employing 500k people in 25k companies (80% are SMEs) with annual sales of EUR 85 billion. The strategy to prevent medical device-infections is alteration of the devices surface with antimicrobials. However, current antimicrobial surfaces dont control bacterial growth in tissue surrounding implants, and only Sterilex has received regulatory approval in the US as anti-biofilm agent. Participants in this proposal have earlier demonstrated a dramatic in vitro inhibition of biofilm formation by 3D-printing surfaces with antibiotics incorporated into the carrier polymers. This discovery opens new possibilities for printed medical devices that better resist biofilms. Our objective is to set-up a new European education platform to guide and inspire young researchers in the intersectoral exploration of innovative routes to counteract microbial biofilms by fabricating anti-infective, tailored, 3D-printed medical devices. Current opportunities for young researchers to receive an structured, inter-sectoral and up-to-date education on personalized medicine and medical devices are marginal, and to our knowledge PRINT-AID is the first ETN set up for this purpose. State-of-the-art printing technologies will be combined with in vitro and in vivo biofilm models and novel tools for data integration/standardization. Doctoral training will be performed within a high-quality network of 12 participants (5 industrial) from the EU and US. It will include online and face-to-face courses taught by researchers with academic and industrial expertise in biofilms, 3D-printing research, antimicrobials, material science, and drug development.


The overall research objective of the SPICES project is to implement and evaluate a comprehensive CVD prevention and control program in five settings: a rural & semi-urban community in a low-income country (Uganda), middle income (South Africa) and vulnerable groups in three high-income countries (Belgium, France and United Kingdom) as well as to identify and compare the barriers and facilitators across study contexts. The project will be evaluated using a mix of formative assessments; pre/post and trial designs. At the beginning of the project, we will conduct baseline assessments including literature reviews, formative studies, household surveys (where feasible) and learn lessons from other projects to understand healthcare and lifestyle practices, barriers, and facilitators. A cost-effectiveness and cost benefit analysis will be included. In addition, the teams will conduct site exchanges visits to learn from each other and organise policy dialogues to ensure sustainability and maximise impact of the interventions. The implementation outcomesacceptability, adoption, appropriateness, feasibility, fidelity, implementation cost, coverage, and sustainability will be evaluated in order to understand the factors affecting the implementation, the processes, and the accruing results. The intervention of the SPICES project will aim to: (1) improve patients risk profiles (LDL-cholesterol, blood pressure, HbA1c (among patients with diabetes), modify lifestyles (diet and exercise and smoking cessation) and achieve recommended cholesterol, blood pressure and glycaemic control targets; (2) increase proportion of patients receiving appropriate BP, cholesterol and diabetes medication; (3) and mitigate the number of people developing complications such a stroke and myocardial infarction.

Loading University of Antwerp collaborators
Loading University of Antwerp collaborators