Faro, Portugal
Faro, Portugal

The University of the Algarve is a Portuguese public university with administrative and financial autonomy. Its two campuses and the central administration are located in Faro, the capital city of the Algarve region. Wikipedia.


Time filter

Source Type

Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ENV.2013.6.2-8 | Award Amount: 12.42M | Year: 2013

The MIDAS project addresses fundamental environmental issues relating to the exploitation of deep-sea mineral and energy resources; specifically polymetallic sulphides, manganese nodules, cobalt-rich ferromanganese crusts, methane hydrates and the potential mining of rare earth elements. These new industries will have significant impacts on deep-sea ecosystems, in some cases extending over hundreds of thousands of square kilometres. Scientific knowledge is needed urgently to develop guidelines for industry ensuring wealth creation and Best Environmental Practice. MIDAS will assess the nature and scales of the potential impacts including 1) physical destruction of the seabed by mining, the creation of mine tailings and the potential for catastrophic slope failures from methane hydrate exploitation, 2) the potential effects of particle-laden plumes in the water column, and 3) the possible toxic chemicals that might be released by the mining process. Knowledge of the impacts will be used to address the key biological unknowns, such as connectivity between populations, impacts of the loss of biological diversity on ecosystem functioning, and how quickly the ecosystems will recover. The information derived will be used to guide recommendations for best practice, iterating with MIDAS industry partners and the wider stakeholder community to ensure that solutions are practical and cost-effective. We will engage with European and international regulatory organisations to take these recommendations forward into legislation in a timely fashion. A major element of MIDAS will be to develop methods and technologies for 1) preparing baseline assessments of biodiversity, and 2) monitoring activities remotely in the deep sea during and after exploitation (including ecosystem recovery). The MIDAS partnership represents a unique combination of scientists, industry, social scientists, legal experts, NGOs and SMEs.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ENV.2013.WATER INNO&DEMO-1 | Award Amount: 8.04M | Year: 2013

Southern Europe and the Mediterranean region are facing the challenge of managing its water resources under conditions of increasing scarcity and concerns about water quality. Already, the availability of fresh water in sufficient quality and quantity is one of the major factors limiting socio economic development. Innovative water management strategies such as the storage of reclaimed water or excess water from different sources in Managed Aquifer Recharge (MAR) schemes can greatly increase water availability and therefore improve water security. Main objective of the proposed project MARSOL is to demonstrate that MAR is a sound, safe and sustainable strategy that can be applied with great confidence and therefore offering a key approach for tackling water scarcity in Southern Europe. For this, eight field sites were selected that will demonstrate the applicability of MAR using various water sources, ranging from treated wastewater to desalinated seawater, and a variety of technical solutions. Targets are the alleviation of the effect of climate change on water resources, the mitigation of droughts, to countermeasure temporal and spatial misfit of water availability, to sustain agricultural water supply and rural socio-economic development, to combat agricultural related pollutants, to sustain future urban and industrial water supply and to limit seawater intrusion in coastal aquifers. Results of the demontration sites will be used to develop guidelines for MAR site selection, technical realization, monitoring strategies, and modeling approaches, to offer stakeholders a comprehensive, state of the art and proven toolbox for MAR implementation. Further, the economic and legal aspects of MAR will be analyzed to enable and accelerate market penetration. The MARSOL consortium combines the expertise of consultancies, water suppliers, research institutions, and public authorities, ensuring high practical relevance and market intimacy.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-RISE | Phase: MSCA-RISE-2016 | Award Amount: 1.46M | Year: 2017

The joint research in this programme will study important aspectsboth theoretical as well as appliedof computing with infinite objects. A central aim is laying the grounds for the generation of efficient and verified software in engineering applications. A prime example for infinite data is provided by the real numbers, most commonly conceived as infinite sequences of digits. While most applications in science and engineering substitute the reals with floating point numbers of fixed finite precision and thus have to deal with truncation and rounding errors, the approach in this project is different: exact real numbers are taken as first-class citizens and while any computation can only exploit a finite portion of its input in finite time, increased precision is always available by continuing the computation process. This project aims to bring together the expertise of specialists in mathematics, logic, and computer science to push the frontiers of our theoretical and practical understanding of computing with infinite objects. Three overarching motivations drive the proposed collaboration: Representability. Cardinality considerations tell us that it is not possible to represent arbitrary mathematical objects in a way that is accessible to computation. We will enlist expertise in topology, logic, and set theory, to address the question of which objects are representable and how they can be represented most efficiently. Constructivity. Working in a constructive mathematical universe can greatly enhance our understanding of the link between computation and mathematical structure. Not only informs us which are the objects of relevance, it also allows us to devise always correct algorithms from proofs. Efficient implementation. We also aim to make progress on concrete implementations. Theoretical insights from elsewhere will be tested in actual computer systems; obstacles encountered in the latter will inform the direction of mathematical investigation.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BG-08-2014 | Award Amount: 20.65M | Year: 2015

The overarching objective of AtlantOS is to achieve a transition from a loosely-coordinated set of existing ocean observing activities to a sustainable, efficient, and fit-for-purpose Integrated Atlantic Ocean Observing System (IAOOS), by defining requirements and systems design, improving the readiness of observing networks and data systems, and engaging stakeholders around the Atlantic; and leaving a legacy and strengthened contribution to the Global Ocean Observing System (GOOS) and the Global Earth Observation System of Systems (GEOSS). AtlantOS will fill existing in-situ observing system gaps and will ensure that data are readily accessible and useable. AtlantOS will demonstrate the utility of integrating in-situ and Earth observing satellite based observations towards informing a wide range of sectors using the Copernicus Marine Monitoring Services and the European Marine Observation and Data Network and connect them with similar activities around the Atlantic. AtlantOS will support activities to share, integrate and standardize in-situ observations, reduce the cost by network optimization and deployment of new technologies, and increase the competitiveness of European industries, and particularly of the small and medium enterprises of the marine sector. AtlantOS will promote innovation, documentation and exploitation of innovative observing systems. All AtlantOS work packages will strengthen the trans-Atlantic collaboration, through close interaction with partner institutions from Canada, United States, and the South Atlantic region. AtlantOS will develop a results-oriented dialogue with key stakeholders communities to enable a meaningful exchange between the products and services that IAOOS can deliver and the demands and needs of the stakeholder communities. Finally, AtlantOS will establish a structured dialogue with funding bodies, including the European Commission, USA, Canada and other countries to ensure sustainability and adequate growth of IAOOS.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-IP | Phase: SSH.2013.5.2-1 | Award Amount: 6.39M | Year: 2014

Using an innovative interdisciplinary approach, MIME will generate an organised body of policy-relevant propositions addressing the full range of questions raised in the call. Our aim is to identify the language policies and strategies that best combine mobility and inclusion. MIME emphasises complementarity between disciplines, and brings together researchers from sociolinguistics, political science, sociology, history, geography, economics, education, translation studies, psychology, and law, who all have longstanding experience in the application of their discipline to language issues. The diverse concepts and methods are combined in an analytical framework designed to ensure their practice-oriented integration. MIME identifies, assesses and recommends measures for the management of trade-offs between the potentially conflicting goals of mobility and inclusion in a multilingual Europe. Rather than taking existing trade-offs as a given, we think that they can be modified, both in symbolic and in material/financial terms, and we argue that this objective can best be achieved through carefully designed public policies and the intelligent use of dynamics in civil society. Several partners have been involved in successful FP6 research, and key advances achieved there will guide the MIME project: languages are viewed as fluid realities in a context of high mobility of people, goods, services, and knowledge, influencing the way in which skills and identities are used and constantly re-shaped. The project integrates these micro-level insights into a macro-level approach to multilingual Europe. MIME results will be made widely available through a creative approach to dissemination, including training modules and the MIME Stakeholder Forum, allowing for sustained dialogue between academics, professional associations and local/regional authorities. The project culminates in a consensus conference where recommendations based on the project findings are adopted.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ENV.2013.6.4-3 | Award Amount: 7.65M | Year: 2013

Resilience-Increasing Strategies for Coasts toolKIT (RISC-KIT) will deliver ready-to-use methods, tools and management approaches to reduce risk and increase resilience to low-frequency, high-impact hydro-meteorological events. The open-source and free-ware RISC-KIT tool kit will consist of a Coastal Risk Assessment Framework (CRAF) which - at the regional scale (100s km) - can quickly assess present and future hot spot areas of coastal risk due to multi-hazards a quantitative, high-resolution Early Warning and Decision Support System (EWS/DSS) for use on these hot spots (with a scale of 10s of km) and a web-based management guide offering innovative, cost-effective, ecosystem-based DRR measures; and a Coastal Risk Database of present and historic socio-economic and physical data. These tools will enable Europes coastal managers, decision-makers and stakeholders to identify hot spot areas; produce timely forecasts and early warnings; evaluate the effect of climate-related, socio-economic and cultural changes on coastal risk; and choose the best prevention, mitigation and preparedness measures for their coast. The toolkit will be tested using data collected on ten diverse case study sites along each of Europes regional seas and one international site. The toolkits performance will be evaluated with an End-User Board of coastal managers, civil protection agencies and local governments with a vested interest in each of these case study sites. The RISC-KIT products will help to achieve rapid attainment of UNISDR Disaster Reduction Goals and promote EU-consistent methods through innovative e-learning and open access publication. RISC-KIT will have an active synergy with Belmont Forum projects, related EU projects and an International Expert Board with members from third countries experiencing similar types of threats.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: SC5-10b-2014 | Award Amount: 2.81M | Year: 2015

The aim of INSPIRATION is to adopt a funder and end-user demand-driven approach to establish and promote the adoption of the knowledge creation, transfer and implementation agenda for land use, land-use changes and soil management in the light of current and future societal challenges. Main objectives are: Formulate, consult on and revise an end-user oriented strategic research agenda (SRA), Scope out models of implementing the SRA, Prepare a network of public and private funding institutions willing to commonly fund the execution of the SRA. INSPIRATIONs mission is to improve the supply and effectiveness of science/knowledge take-up by those who really need it. The proposed methodology is based on a multi-stakeholder, multi-national and interdisciplinary approach that covers the variety of stakeholders (public bodies, business, science, citizens and society) and the variety of relevant. The vehicle to engage with all relevant stakeholders across the Member States is a National Focal Point (NFP) in 16 countries. The NFPs will organize workshops with national stakeholders of funders, end users and researchers across the various soil and land management disciplines. The results will be taken up, structured along four integrative themes and merging into thematic knowledge needs to satisfy the as yet unmet societal challenges and to ensure that knowledge contributes primarily to enable meeting these challenges. Based on these results a cross country and cross discipline dialogue will subsequently be organized among the relevant user communities, funding bodies and scientific communities in Europe in order to reach a trans-national, prioritized SRA as well as a model for execution of this SRA. Thus to achieve an SRA of which national funders believe that for any Euro they spend, they will get a multitude of Euros worth of knowledge in return. Knowledge welcomed to face their national, societal challenges.


Band theory for inorganic materials versus hopping or percolation theory for organics? Band theory conduction is contrasted with the more widely used percolation and hopping theories for organic electronic materials (). These materials are generally of lower performance than their inorganic counterparts and this is often presented as justification for a different conduction mechanism. Here it is reasoned that switching to a different conduction mechanism for electronic organic materials is not justified. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-06-2014 | Award Amount: 4.00M | Year: 2015

The demand for broadband content and services has been growing at tremendous rates, and predictions indicate that wireless data-rates of multiple tens of Gbps will be required by the year 2020, essentially for short-range connectivity. Currently available wireless technology cannot support these future demands, and so there is an urgent need to develop new technology platforms that are cost and energy efficient to enable ubiquitous ultra-broadband wireless communications seamlessly integrated with high-speed fibre-optic networks, paving the way for 100 Gbps datarates in the long term. The frequency spectrum currently in use is not expected to be suitable to accommodate the predicted future data-rate requirements, and therefore there is a need to embrace higher frequency bands, above 60 GHz and up to 1 THz. iBROW aims at developing a novel, low cost, energy-efficient and compact ultra-broadband short-range wireless communication transceiver technology, capable of addressing predicted future network usage requirements. This will be pursued through the exploitation of Resonant Tunnelling Diode (RTD) devices which represent the fastest pure solid-state electronic devices operating at room temperature with reported working frequencies exceeding 1 THz. Through the development of a unified technology that can be integrated into both ends of the wireless link, namely consumer portable devices and fibre-optic supported base-stations, the project aims at increasing the RTD output power, optical detection efficiency and energy efficiency at target frequencies, developing a methodology for low cost RTD manufacturing on a silicon platform, photonic integration and packaging, as well as identifying appropriate communication methods and architectures to enable its deployment in 10 Gbps short-range wireless communication devices in short term and paving the way for 100 Gbps in long term for both the mm-wave and THz frequency bands, seamlessly integrated with optical fibre networks


Grant
Agency: European Commission | Branch: H2020 | Program: CSA-LS | Phase: INNOSUP-5-2014 | Award Amount: 50.00K | Year: 2016

The business networks involved in the present partnership from Bulgaria, Finland, Portugal and Spain, represent mainly SMEs, with a clear prominence of the very small, so-called microenterprises, which have less than ten workers, and autonomous entrepreneurship. These micro businesses have strong growth & innovation potential as they often populate the regional RIS3 of the partner areas. The innovation agencies need to improve their performance, development and resilience. According to Daniel Calleja, the General Director of Enterprise & Industry from the European Commission, the needs of the entrepreneurs should be more efficiently fulfilled to support them to grow, be stronger & more resilient to crisis and external circumstances. Indeed, the main objective of this new proposal is to support SMEs to growth at global level, in an innovative and sustainable manner, offering practical solutions designed specifically in direct collaboration with them and with the Innovation support agencies participating. The relevance of the project In- Business Growth to the Call INNOSUP5 & the associated work program is perfectly adequate, as its objective aims to revise the actual program and methodologies used in term of entrepreneurial growth between the Innovation support agencies involved directly or indirectly to the project, to update and actualize these programs to be more demand driven and ensure the satisfaction of the beneficiaries with the support provided, and to promote permanent mutual policy learning and exchange of good practices. The objectives will be achieved using the twinning\ methodology based on peer learning among innovation agencies which include peer reviews at national & international level, the establishment of a guide of good practices & methodology and the comparison and transfer of practices to third parties. The quality management of the whole process will be a key element. The final result will be the delivering of the Design Options paper.

Loading University of Algarve collaborators
Loading University of Algarve collaborators