Time filter

Source Type

Arhus, Denmark

Aarhus University is a public university located in Aarhus, Denmark. Founded in 1928, it is Denmark's second oldest university and the largest, with a total of 43,600 enrolled students as of 1 January 2012, after a merger with Aarhus School of Engineering. In most prestigious ranking lists of the world´s best universities, Aarhus University is placed in the top 100. The university belongs to the Coimbra Group of European universities.Denmark's first professor of sociology was a member of the faculty of Aarhus University , and in 1997 Professor Jens Christian Skou received the Nobel Prize in Chemistry for his discovery of the sodium-potassium pump. In 2010 Dale T. Mortensen, a Niels Bohr Visiting Professor at Aarhus University, received the Nobel Prize in Economic science together with his colleagues Peter Diamond and Christopher Pissarides. Wikipedia.

Paludan S.,University of Aarhus | Bowie A.,Trinity College Dublin
Immunity | Year: 2013

Although it has been appreciated for some years that cytosolic DNA is immune stimulatory, it is only in the past five years that the molecular basis of DNA sensing by the innate immune system has begun to be revealed. In particular it has been described how DNA induces type I interferon, central in antiviral responses and a mediator of autoimmunity. To date more than ten cytosolic receptors of DNA have been proposed, but STING is a key adaptor protein for most DNA-sensing pathways, and we are now beginning to understand the signaling mechanisms for STING. In this review we describe the recent progress in understanding signaling mechanisms activated by DNA and the relevance of DNA sensing to pathogen responses and autoimmunity. We highlight new insights gained into how and why the immune system responds to both pathogen and self DNA and define important questions that now need to be addressed in the field of innate immune activation by DNA. © 2013 Elsevier Inc.

The fungus Mycosphaerella graminicola has been a pathogen of wheat since host domestication 10,000-12,000 years ago in the Fertile Crescent. The wheat-infecting lineage emerged from closely related Mycosphaerella pathogens infecting wild grasses. We use a comparative genomics approach to assess how the process of host specialization affected the genome structure of M. graminicola since divergence from the closest known progenitor species named M. graminicola S1. The genome of S1 was obtained by Illumina sequencing resulting in a 35 Mb draft genome sequence of 32X. Assembled contigs were aligned to the previously sequenced M. graminicola genome. The alignment covered >90% of the non-repetitive portion of the M. graminicola genome with an average divergence of 7%. The sequenced M. graminicola strain is known to harbor thirteen essential chromosomes plus eight dispensable chromosomes. We found evidence that structural rearrangements significantly affected the dispensable chromosomes while the essential chromosomes were syntenic. At the nucleotide level, the essential and dispensable chromosomes have evolved differently. The average synonymous substitution rate in dispensable chromosomes is considerably lower than in essential chromosomes, whereas the average non-synonymous substitution rate is three times higher. Differences in molecular evolution can be related to different transmission and recombination patterns, as well as to differences in effective population sizes of essential and dispensable chromosomes. In order to identify genes potentially involved in host specialization or speciation, we calculated ratios of synonymous and non-synonymous substitution rates in the >9,500 aligned protein coding genes. The genes are generally under strong purifying selection. We identified 43 candidate genes showing evidence of positive selection, one encoding a potential pathogen effector protein. We conclude that divergence of these pathogens was accompanied by structural rearrangements in the small dispensable chromosomes, while footprints of positive selection were present in only a small number of protein coding genes.

Jensen F.,University of Aarhus
Wiley Interdisciplinary Reviews: Computational Molecular Science | Year: 2013

Electronic structure methods for molecular systems rely heavily on using basis sets composed of Gaussian functions for representing the molecular orbitals. A number of hierarchical basis sets have been proposed over the last two decades, and they have enabled systematic approaches to assessing and controlling the errors due to incomplete basis sets. We outline some of the principles for constructing basis sets, and compare the compositions of eight families of basis sets that are available in several different qualities and for a reasonable number of elements in the periodic table. © 2012 John Wiley & Sons, Ltd.

Zelikin A.N.,University of Aarhus
ACS Nano | Year: 2010

Polymer films and coatings are among the popular and most successful tools to modulate surface properties of biomaterials, specifically tissue responses and fouling behavior. Over the past decade, a novel opportunity has been widely investigated, namely utility of surface coatings in surface-mediated drug delivery. In these applications, deposited polymer films act as both a coating to modulate surface properties and a reservoir for active therapeutic cargo. The field has recently accelerated beyond the proof-of-concept reports toward delivering practical solutions and established technologies for biomedical applications. This review briefly summarizes the recent successes of polymer thin films, specifically those constructed by sequential polymer deposition technique, in surface-mediated drug delivery. © 2010 American Chemical Society.

Ogilby P.R.,University of Aarhus
Chemical Society Reviews | Year: 2010

Singlet oxygen, O2(a1Δg), the lowest excited electronic state of molecular oxygen, has been known to the scientific community for ∼80 years. It has a characteristic chemistry that sets it apart from the triplet ground state of molecular oxygen, O2(X 3Σ-g), and is important in fields that range from atmospheric chemistry and materials science to biology and medicine. For such a "mature citizen", singlet oxygen nevertheless remains at the cutting-edge of modern science. In this critical review, recent work on singlet oxygen is summarized, focusing primarily on systems that involve light. It is clear that there is indeed still something new under the sun (243 references). © 2010 The Royal Society of Chemistry.

Discover hidden collaborations