Entity

Time filter

Source Type

Göttingen, Germany

Sampaio-Marques B.,University of Minho | Sampaio-Marques B.,ICVS 3Bs PT Government Associate Laboratory | Felgueiras C.,University of Minho | Felgueiras C.,ICVS 3Bs PT Government Associate Laboratory | And 13 more authors.
Autophagy | Year: 2012

SNCA (α-synuclein) misfolding and aggregation is strongly associated with both idiopathic and familial forms of Parkinson disease (PD). Evidence suggests that SNCA has an impact on cell clearance routes and protein quality control systems such as the ubiquitin-proteasome system (UPS) and autophagy. Recent advances in the key role of the autosomal recessive PARK2/PARKIN and PINK1 genes in mitophagy, highlighted this process as a prominent new pathogenic mechanism. Nevertheless, the role of autophagy/mitophagy in the pathogenesis of sporadic and autosomal dominant familial forms of PD is still enigmatic. The yeast Saccharomyces cerevisiae is a powerful "empty room" model that has been exploited to clarify different molecular aspects associated with SNCA toxicity, which combines the advantage of being an established system for aging research. The contribution of autophagy/mitophagy for the toxicity induced by the heterologous expression of the human wild-type SNCA gene and the clinical A53T mutant during yeast chronological life span (CLS) was explored. A reduced CLS together with an increase of autophagy and mitophagy activities were observed in cells expressing both forms of SNCA. Impairment of mitophagy by deletion of ATG11 or ATG32 resulted in a CLS extension, further implicating mitophagy in the SNCA toxicity. Deletion of SIR2, essential for SNCA toxicity, abolished autophagy and mitophagy, thereby rescuing cells. These data show that Sir2 functions as a regulator of autophagy, like its mammalian homolog, SIRT1, but also of mitophagy. Our work highlights that increased mitophagy activity, mediated by the regulation of ATG32 by Sir2, is an important phenomenon linked to SNCA-induced toxicity during aging. © 2012 Landes Bioscience. Source


Maxwell M.M.,Harvard University | Zaldivar-Jolissaint J.F.,Ecole Polytechnique Federale de Lausanne | Mai A.,University of Rome La Sapienza | Outeiro T.F.,University Medizin Goettingen | Kazanstev A.G.,Harvard University
EMBO Molecular Medicine | Year: 2012

From February 12-16, 2012, leading members of the sirtuin scientific community assembled in Tahoe, CA to attend the Keystone Symposium "Sirtuins in Aging, Metabolism, and Disease." It was a vibrant and lively meeting, and in the spirit of Keystone Symposia, both established sirtuin researchers and those new to the field enjoyed a unique opportunity to interact and exchange ideas. © 2012 EMBO Molecular Medicine. Source


McFarland K.N.,University of Florida | Huizenga M.N.,Massachusetts General Hospital | Darnell S.B.,Massachusetts General Hospital | Sangrey G.R.,Massachusetts General Hospital | And 4 more authors.
Human Molecular Genetics | Year: 2014

Transcriptional dysregulation has been proposed to play amajor role in the pathology of Huntington's disease (HD). However, the mechanisms that cause selective downregulation of target genes remain unknown. Previous studies have shown that mutant huntingtin (Htt) protein interacts with a number of transcription factors thereby altering transcription. Here we report that Htt directly interacts with methyl-CpG binding protein 2 (MeCP2) in mouse and cellular models of HD using complimentary biochemical and Fluorescent Lifetime Imaging to measure Fö rster Resonance Energy Transfer approaches. Htt-MeCP2 interactions are enhanced in the presence of the expanded polyglutamine (polyQ) tract and are stronger in the nucleus compared with the cytoplasm. Furthermore, we find increased binding of MeCP2 to the promoter of brain-derived neurotrophic factor (BDNF), a gene that is downregulated in HD, in the presence of mutant Htt. Finally, decreasing MeCP2 levels in mutant Htt-expressing cells using siRNA increases BDNF levels, suggesting that MeCP2 downregulates BDNF expression in HD. Taken together, these findings suggest that aberrant interactions between Htt and MeCP2 contribute to transcriptional dysregulation in HD. © The Author 2013. Published by Oxford University Press. All rights reserved. Source


Amaral J.D.,University of Lisbon | Herrera F.,Institute Medicina Molecular | Rodrigues P.M.,University of Lisbon | Dionisio P.A.,University of Lisbon | And 4 more authors.
Biochemical Pharmacology | Year: 2013

p53 plays an important role in regulating a wide variety of cellular processes, such as cell cycle arrest and/or apoptosis. Dysfunction of p53 is frequently associated with several pathologies, such as cancer and neurodegenerative diseases. In recent years substantial progress has been made in developing novel p53-activating molecules. Importantly, modulation of p53 interaction with its main inhibitor, Mdm2, has been highlighted as a promising therapeutic target. In this regard, bimolecular fluorescence complementation (BiFC) analysis, by providing direct visualization of protein interactions in living cells, offers a straightforward method to identify potential modulators of protein interactions. In this study, we developed a simple and robust Venus-based BiFC system to screen for modulators of p53-p53 and p53-Mdm2 interactions in live mammalian cells. We used nutlin-3, a well-known disruptor of p53-Mdm2 interaction, to validate the specificity of the assay. The reduction of BiFC signal mediated by nutlin-3 was correlated with an increase in Puma transactivation, PARP cleavage, and cell death. Finally, this novel BiFC approach was exploited to identify potential modulators of p53-Mdm2 complex formation among a commercially available chemical library of 33 protein phosphatase inhibitors. Our results constitute "proof-of-concept" that this model has strong potential as an alternative to traditional target-based drug discovery strategies. Identification of new modulators of p53-p53 and p53-Mdm2 interactions will be useful to achieve synergistic drug efficacy with currently used anti-tumor therapies. © 2012 Elsevier Inc. Source


Rosa P.,IN Institute of Nanoscience and Nanotechnology | Tenreiro S.,University of Lisbon | Chu V.,IN Institute of Nanoscience and Nanotechnology | Outeiro T.F.,University of Lisbon | And 3 more authors.
Biomicrofluidics | Year: 2012

Microfluidics is an emerging technology which allows the miniaturization, integration, and automation of fluid handling processes. Microfluidic systems offer low sample consumption, significantly reduced processing time, and the prospect of massive parallelization. A microfluidic platform was developed for the control of the soluble cellular microenvironment of Saccharomyces cerevisiae cells, which enabled high-throughput monitoring of the controlled expression of alpha-synuclein (aSyn), a protein involved in Parkinson's disease. Y-shaped structures were fabricated using particle desorption mass spectrometry-based soft-lithography techniques to generate biomolecular gradients along a microchannel. Cell traps integrated along the microchannel allowed the positioning and monitoring of cells in precise locations, where different, well-controlled chemical environments were established. S. cerevisiae cells genetically engineered to encode the fusion protein aSyn-GFP (green fluorescent protein) under the control of GAL1, a galactose inducible promoter, were loaded in the microfluidic structure. A galactose concentration gradient was established in the channel and a time-dependent aSyn-GFP expression was obtained as a function of the positioning of cells along the galactose gradient. Our results demonstrate the applicability of this microfluidic platform to the spatiotemporal control of cellular microenvironment and open a range of possibilities for the study of cellular processes based on single-cell analysis. © 2012 American Institute of Physics. Source

Discover hidden collaborations