Time filter

Source Type

De Roo A.-K.,Catholic University of Leuven | De Roo A.-K.,Leuven University Hospitals Leuven | Wouters J.,Leuven University Hospitals Leuven | Govaere O.,Catholic University of Leuven | And 5 more authors.
Investigative Ophthalmology and Visual Science | Year: 2017

PURPOSE. Fuchs’ endothelial corneal dystrophy (FECD) is a degenerative eye disorder affecting 4% of Americans older than 40. It is the leading indication for corneal endothelial (CE) transplantation for which there is a global donor shortage. This study aimed to gain further insight into the pathophysiology of FECD and identify targets for nonsurgical therapy. METHODS. CE from patients with late-onset FECD was compared with that of normal controls using microarray expression analysis (n = 4 FECD, n = 4 normal), reverse transcriptase quantitative PCR (n = 9 FECD, n = 8 normal), and immunohistology (n = 55 FECD, n = 15 normal). RESULTS. This led to the identification of circulating fibrocytes and their dendritic derivatives in all examined CE samples with FECD (in all clinical stages of symptomatic FECD and independent of prior cataract surgery). These cells were not present in normal CE. In this study we characterize their morphology, protein expression profile, number, and localization within the CE layer of patients with FECD. CONCLUSIONS. Circulating fibrocytes and their dendritic derivatives are a new aspect of FECD that deserves further investigation. Because they are known to cause fibrosis in a variety of organs, they may play a similar role in FECD and might be a valuable target for nonsurgical therapy. © 2016, Association for Research in Vision and Ophthalmology Inc. All rights Reserved.


Mirea O.,Catholic University of Leuven | Duchenne J.,Catholic University of Leuven | Voigt J.-U.,Catholic University of Leuven | Voigt J.-U.,Leuven University Hospitals Leuven
F1000Research | Year: 2016

Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications. © 2016 Mirea O et al.


PubMed | Leuven University Hospitals Leuven, Catholic University of Leuven and Northumbria University
Type: Journal Article | Journal: Investigative ophthalmology & visual science | Year: 2017

Fuchs endothelial corneal dystrophy (FECD) is a degenerative eye disorder affecting 4% of Americans older than 40. It is the leading indication for corneal endothelial (CE) transplantation for which there is a global donor shortage. This study aimed to gain further insight into the pathophysiology of FECD and identify targets for nonsurgical therapy.CE from patients with late-onset FECD was compared with that of normal controls using microarray expression analysis (n = 4 FECD, n = 4 normal), reverse transcriptase quantitative PCR (n = 9 FECD, n = 8 normal), and immunohistology (n = 55 FECD, n = 15 normal).This led to the identification of circulating fibrocytes and their dendritic derivatives in all examined CE samples with FECD (in all clinical stages of symptomatic FECD and independent of prior cataract surgery). These cells were not present in normal CE. In this study we characterize their morphology, protein expression profile, number, and localization within the CE layer of patients with FECD.Circulating fibrocytes and their dendritic derivatives are a new aspect of FECD that deserves further investigation. Because they are known to cause fibrosis in a variety of organs, they may play a similar role in FECD and might be a valuable target for nonsurgical therapy.


PubMed | Leuven University Hospitals Leuven and Catholic University of Leuven
Type: | Journal: Frontiers in physiology | Year: 2016

Wound healing is a primary survival mechanism that is largely taken for granted. The literature includes relatively little information about disturbed wound healing, and there is no acceptable classification describing wound healing process in the oral region. Wound healing comprises a sequence of complex biological processes. All tissues follow an essentially identical pattern to complete the healing process with minimal scar formation. The oral cavity is a remarkable environment in which wound healing occurs in warm oral fluid containing millions of microorganisms. The present review provides a basic overview of the wound healing process and with a discussion of the local and general factors that play roles in achieving efficient would healing. Results of oral cavity wound healing can vary from a clinically healed wound without scar formation and with histologically normal connective tissue under epithelial cells to extreme forms of trismus caused by fibrosis. Many local and general factors affect oral wound healing, and an improved understanding of these factors will help to address issues that lead to poor oral wound healing.


PubMed | Catholic University of Leuven, Leuven &University Hospitals Leuven and University of Campinas
Type: | Journal: Scientific reports | Year: 2015

Osteoporosis leads to increased bone fragility, thus effective approaches enhancing bone strength are needed. Hence, this study investigated the effect of single or combined application of high-frequency (HF) loading through whole body vibration (WBV) and alendronate (ALN) on the mechanical competence of ovariectomy-induced osteoporotic bone. Thirty-four female Wistar rats were ovariectomized (OVX) or sham-operated (shOVX) and divided into five groups: shOVX, OVX-shWBV, OVX-WBV, ALN-shWBV and ALN-WBV. (Sham)WBV loading was applied for 10 min/day (130 to 150 Hz at 0.3g) for 14 days and ALN at 2 mg/kg/dose was administered 3x/week. Finite element analysis based on micro-CT was employed to assess bone biomechanical properties, relative to bone micro-structural parameters. HF loading application to OVX resulted in an enlarged cortex, but it was not able to improve the biomechanical properties. ALN prevented trabecular bone deterioration and increased bone stiffness and bone strength of OVX bone. Finally, the combination of ALN with HF resulted in an increased cortical thickness in OVX rats when compared to single treatments. Compared to HF loading, ALN treatment is preferred for improving the compromised mechanical competence of OVX bone. In addition, the association of ALN with HF loading results in an additive effect on the cortical thickness.

Loading Leuven &University Hospitals Leuven collaborators
Loading Leuven &University Hospitals Leuven collaborators