Time filter

Source Type

Heyrman L.,Catholic University of Leuven | Feys H.,Catholic University of Leuven | Molenaers G.,University Hospital of Pellenberg | Molenaers G.,Catholic University of Leuven | And 5 more authors.
Research in Developmental Disabilities | Year: 2014

Altered trunk movements during gait in children with CP are considered compensatory due to lower limb impairments, although scientific evidence for this assumption has not yet been provided. This study aimed to study the functional relation between trunk and lower limb movement deficits during gait in children with spastic diplegia. Therefore, the relationship between trunk control in sitting, and trunk and lower limb movements during gait was explored in 20 children with spastic diplegia (age 9.2±3 yrs; GMFCS level I n=10, level II n=10). Trunk control in sitting was assessed with the Trunk Control Measurement Scale (TCMS), a clinical measure that reflects the presence of an underlying trunk control deficit. Trunk movements during gait were measured with a recently developed trunk model including the pelvis, thorax, head, shoulder line and spine. Lower limb movements were assessed with the Plug-in-Gait model (Vicon®). Range of motion (ROM) of the different trunk segments was calculated, as well as the Trunk Profile Score (TPS) and Trunk Variable Scores (TVSs). Similarly, the Gait Profile Score (GPS) and Gait Variable Scores (GVSs) were calculated to describe altered lower limb movements during gait. Correlation analyses were performed between the presence of impaired trunk control in sitting (TCMS) and altered trunk movements during gait (ROM, TPS/TVSs) and between these altered trunk movements and lower limb movements (GPS/GVSs) during gait. A poorer performance on the TCMS correlated with increased ROM and TPS/TVSs, particularly for the thorax, indicating the presence of an underlying trunk control deficit. No significant correlation was found between the TPS and GPS, suggesting that overall trunk and lower limb movement deficits were not strongly associated. Only few correlations between specific lower limb deficits (GVSs for hip ab/adduction, knee flexion/extension and ankle flexion/extension) and TVSs for thorax lateral bending and rotation were found. This study provided first evidence that the altered trunk movements observed during gait should not be solely considered compensatory due to lower limb impairments, but that these may also partially reflect an underlying trunk control deficit. A better understanding of underlying trunk control deficits in children with CP may facilitate targeted therapy planning and ultimately can optimize a child's functionality. © 2014 Elsevier Ltd. Source

Heinen F.,Ludwig Maximilians University of Munich | Desloovere K.,University Hospital of Pellenberg | Schroeder A.S.,Ludwig Maximilians University of Munich | Berweck S.,Specialist Center for Paediatric Neurology | And 33 more authors.
European Journal of Paediatric Neurology | Year: 2010

An interdisciplinary European group of clinical experts in the field of movement disorders and experienced Botulinum toxin users has updated the consensus for the use of Botulinum toxin in the treatment of children with cerebral palsy (CP). A problem-orientated approach was used focussing on both published and practice-based evidence. In part I of the consensus the authors have tabulated the supporting evidence to produce a concise but comprehensive information base, pooling data and experience from 36 institutions in 9 European countries which involves more than 10,000 patients and over 45,000 treatment sessions during a period of more than 280 treatment years. In part II of the consensus the Gross Motor Function Measure (GMFM) and Gross Motor Function Classification System (GMFCS) based Motor Development Curves have been expanded to provide a graphical framework on how to treat the motor disorders in children with CP. This graph is named "CPGraph Treatment Modalities - Gross Motor Function" and is intended to facilitate communication between parents, therapists and medical doctors concerning (1) achievable motor function, (2) realistic goal-setting and (3) treatment perspectives for children with CP. The updated European consensus 2009 summarises the current understanding regarding an integrated, multidisciplinary treatment approach using Botulinum toxin for the treatment of children with CP. © 2009 European Paediatric Neurology Society. Source

Discover hidden collaborations