London, United Kingdom
London, United Kingdom

University College London , formerly styled University College, London, is a public research university in London, England and a constituent college of the federal University of London. Founded in 1826 as London University, UCL was the first university institution established in London and the first in England to be entirely secular, to admit students regardless of their religion, and to admit women on equal terms with men. The philosopher Jeremy Bentham is commonly regarded as the spiritual father of UCL, as his radical ideas on education and society were the inspiration to its founders, although his direct involvement in its foundation was limited. UCL became one of the two founding colleges of the University of London in 1836. It has grown through mergers, including with the Institute of Neurology , the Eastman Dental Institute , the School of Slavonic and East European Studies , the School of Pharmacy and the Institute of Education .UCL's main campus is located in the Bloomsbury area of central London, with a number of institutes and teaching hospitals elsewhere in central London, and satellite campuses in Adelaide, Australia and Doha, Qatar. UCL is organised into 11 constituent faculties, within which there are over 100 departments, institutes and research centres. UCL has around 36,000 students and 11,000 staff and had a total income of £1.02 billion in 2013/14, of which £374.5 million was from research grants and contracts. Measured by number of students it is both the largest higher education institution in London and largest postgraduate institution in the UK. UCL is responsible for several museums and collections in a wide range of fields including the Petrie Museum of Egyptian Archaeology, a leading collection of Egyptian and Sudanese archaeology, and the Grant Museum of Zoology and Comparative Anatomy.UCL ranks highly in domestic and global league tables; it is 20th in the world in the 2014 Academic Ranking of World Universities, joint 5th in the world in the 2014 QS World University Rankings and 22nd in the world in the 2014/15 Times Higher Education World University Rankings. For the period 1999 to 2009 it was the 13th most-cited university in the world . There are 32 Nobel Prize winners and three Fields Medalists amongst UCL's alumni and current and former staff. UCL alumni include the "Father of the Nation" of each of India, Kenya and Mauritius, the inventor of the telephone, and one of the co-discoverers of the structure of DNA. All five of the naturally-occurring noble gases were discovered at UCL by William Ramsay.UCL is part of three of the 11 biomedical research centres established by the NHS in England and is a founding member of the Francis Crick Institute and UCL Partners, the world's largest academic health science centre. UCL has hundreds of research and teaching partnerships, including a major collaboration with Yale University, the Yale UCL Collaborative. UCL is a member of numerous academic organisations including the G5, the League of European Research Universities and the Russell Group and forms part of the 'golden triangle' of British universities. Wikipedia.


Time filter

Source Type

Packer A.M.,University College London | Roska B.,Friedrich Miescher Institute for Biomedical Research | Hauser M.,University College London
Nature Neuroscience | Year: 2013

Optogenetic approaches promise to revolutionize neuroscience by using light to manipulate neural activity in genetically or functionally defined neurons with millisecond precision. Harnessing the full potential of optogenetic tools, however, requires light to be targeted to the right neurons at the right time. Here we discuss some barriers and potential solutions to this problem. We review methods for targeting the expression of light-activatable molecules to specific cell types, under genetic, viral or activity-dependent control. Next we explore new ways to target light to individual neurons to allow their precise activation and inactivation. These techniques provide a precision in the temporal and spatial activation of neurons that was not achievable in previous experiments. In combination with simultaneous recording and imaging techniques, these strategies will allow us to mimic the natural activity patterns of neurons in vivo, enabling previously impossible 'dream experiments'. © 2013 Nature America, Inc. All rights reserved.


Grant
Agency: Cordis | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

This project is the second in the series of EC-financed parts of the Graphene Flagship. The Graphene Flagship is a 10 year research and innovation endeavour with a total project cost of 1,000,000,000 euros, funded jointly by the European Commission and member states and associated countries. The first part of the Flagship was a 30-month Collaborative Project, Coordination and Support Action (CP-CSA) under the 7th framework program (2013-2016), while this and the following parts are implemented as Core Projects under the Horizon 2020 framework. The mission of the Graphene Flagship is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries. This will bring a new dimension to future technology a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the EU investment, both in terms of technological innovation and economic growth. To realise this vision, we have brought together a larger European consortium with about 150 partners in 23 countries. The partners represent academia, research institutes and industries, which work closely together in 15 technical work packages and five supporting work packages covering the entire value chain from materials to components and systems. As time progresses, the centre of gravity of the Flagship moves towards applications, which is reflected in the increasing importance of the higher - system - levels of the value chain. In this first core project the main focus is on components and initial system level tasks. The first core project is divided into 4 divisions, which in turn comprise 3 to 5 work packages on related topics. A fifth, external division acts as a link to the parts of the Flagship that are funded by the member states and associated countries, or by other funding sources. This creates a collaborative framework for the entire Flagship.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.90M | Year: 2015

Development of fuel injection equipment (FIE) able to reduce pollutant emissions from liquid-fueled transportation and power generation systems is a top industrial priority in order to meet the forthcoming EU 2020 emission legislations. However, design of new FIE is currently constrained by the incomplete physical understanding of complex micro-scale processes, such as in-nozzle cavitation, primary and secondary atomization. Unfortunately, todays computing power does not allow for an all-scale analysis of these processes. The proposed program aims to develop a large eddy simulation (LES) CFD model that will account for the influence of unresolved sub-grid-scale (SGS) processes to engineering scales at affordable computing time scales. The bridging parameter between SGS and macro-scales flow processes is the surface area generation/destruction occurring during fuel atomisation; relevant SGS closure models will be developed through tailored experiments and DNS and will be implemented into the LES model predicting the macroscopic spray development as function of the in-nozzle flow and surrounding air conditions. Validation of the new simulation tool, currently missing from todays state-of-the-art models, will be performed against new benchmark experimental data to be obtained as part of the programme, in addition to those provided by the industrial partners. This will demonstrate the applicability of the model as an engineering design tool suitable for IC engines, gas turbines, fuel burners and even rocket engine fuel injectors. The proposed research and training programme will be undertaken by 15ESRs funded by the EU and one ESR funded independently from an Australian partner; ESRs will be recruited/seconded by universities, research institutes and multinational fuel injection and combustion systems manufacturers that will represent in the best possible way the international, interdisciplinary and intersectoral requirements of the Marie Curie Action guidelines.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-31-2014 | Award Amount: 3.00M | Year: 2015

Health inequities have been increasing in Europe, particularly in a context of an ageing society and economic crisis. In countries with different levels of infrastructures and health system preparedness, inequities create significant policy challenges. The main goal of this project is to advance knowledge of policies that have the highest potential to enhance health and health equity across European regions with particular focus on metropolitan areas. To achieve this goal, the project will develop tools based on a population health index to evaluate the health and wellbeing of European population. This index will be informed by evidence on the relationship between multiple determinants (e.g. demographic, social, economic, environmental, lifestyle, and health care) and health outcomes in the past 15 years. It will be constructed using a multicriteria model structure, following a socio-technical approach: integrating the technical elements of a multicriteria value model and the social elements of interdisciplinary and participatory processes. The index will be applied to evaluate the populations health in 273 NUTS 2 European regions and 9 selected pilot metropolitan areas (covering populations of 28 EU countries). The space-time analysis and comparison of the population health index will be enabled by a user-friendly web-based Geographic Information System. The population health index will be used to foresee and discuss the impact of multilevel policies and combinations of policies in population health and health equity across European regions, thus providing a basis for policy dialogue. Multicriteria resource allocation models, conflict analyses, analysis of policies feasibility, and scenario analyses will then assist in providing evidence on which policies have the highest potential to improve health and reduce health inequities at different geographical levels, and in suggesting alternative policy options for health policy development and regulation.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.90M | Year: 2015

The Phosphoinositide 3-kinase (PI3K) pathway is at the core of multiple fundamental biological processes controlling metabolism, protein synthesis, cell growth, survival, and migration. This inevitably leads to the involvement of the PI3K signalling pathway in a number of different diseases, ranging from inflammation and diabetes to cancer, with PI3K pathway alterations present in almost 80% of human cancers. Therefore, PI3Ks have emerged as important targets for drug discovery and, during 2014, the first PI3K inhibitor was approved by FDA in the US for the treatment of a lymphocytic leukaemia. Nonetheless, our understanding of PI3K-mediated signalling is still poor and only a fraction of the potential therapeutic applications have been addressed so far, leaving a large amount of translational work unexplored. Europe features a set of top quality research institutions and pharmaceutical companies focused on PI3K studies but their activities have been so far scattered. This proposal fills this gap by providing a multidisciplinary network (biochemistry, mouse studies, disease models, drug development, software development) and an unprecedented training opportunity from the bench to the bedside (from pre-clinical discoveries to clinical trials), through cutting edge molecular biology, drug discovery and clinical trial organization. The proposal is aimed at training young investigators in deep understanding of the different PI3K isoforms in distinct tissues and to translate this knowledge into a new generation of PI3K inhibitors, treatment modalities and into identify new uses for existing PI3K inhibitors.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: SC5-13a-2014 | Award Amount: 2.09M | Year: 2015

The exploitation of minerals in Europe is an indispensable activity to ensure that the present and future needs of the European society can be met. This means that sufficient access is required to explore and exploit minerals. At the same time the mineral needs of our society must be met without compromising the ability of future generations to meet their own needs. Accordingly exploitable mineral deposits (known deposits, abandoned mines and historical mining sites) need to be assessed against other land uses, taking into account criteria such as habitats, other environmental concerns, priorities for settlements, etc. Access to mineral deposits, on the other hand, also meets public interests such as raw materials security (compared with many international access options). The deliberation between these diverse land uses requires adequate consideration of the exclusiveness, reversibility, and consequences on the surrounding. The overall objective of MINATURA 2020 is to develop a concept and methodology (i.e. a harmonised European regulatory/guidance/policy framework) for the definition and subsequent protection of mineral deposits of public importance in order to ensure their best use in the future. Providing a policy planning framework that comprises the sustainability principle for mining is the key driving force behind MINATURA.


Grant
Agency: Cordis | Branch: H2020 | Program: SGA-CSA | Phase: INNOVATION | Award Amount: 2.34M | Year: 2015

A national service in support of recipients of the H2020 sme instrument and for the enhancement of innovation management in SMEs Innovation is a vital ingredient of growth and an important element of the future success of the UK. With some 95% of R&D and innovation conducted outside of the UK and many major and lead market shaping companies being of non-UK origin, access to knowledge, markets, skills and partners is increasingly taking place on a global basis. To ensure UK business stays competitive it is important that it is able to effectively access and exploit the growing global investment in research and innovation. Through EEN ENIW activities we will help businesses build collaborations and partnerships and access the finance, knowledge, skills, networks and customers to more rapidly move a concept through to commercialisation.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.87M | Year: 2016

Cancer is a major social problem, and it is the main cause of death between the ages 45-65 years. In the treatment of cancer, radio therapy (RT) plays an essential role. RT with hadrons (protons and light ions), due to their unique physical and radiobiological properties, offers several advantages over photons for specific cancer types. In particular, they penetrate the patient with minimal diffusion, they deposit maximum energy at the end of their range, and they can be shaped as narrow focused and scanned pencil beams of variable penetration depth. Although significant progress has been made in the use of particle beams for cancer treatment, an extensive research and development program is still needed to maximize the healthcare benefits from these therapies. The Optimization of Medical Accelerators (OMA) is the aim of the here-proposed European Training Network, in line with the requirements of the ECs Medical Exposure Directive. OMA joins universities, research centers and clinical facilities with industry partners to address the challenges in treatment facility design and optimization, numerical simulations for the development of advanced treatment schemes, and in beam imaging and treatment monitoring. The proposed R&D program ranges from life sciences (oncology, cell and micro biology and medical imaging.), physics and accelerator sciences, mathematics and IT, to engineering. It is hence ideally suited for an innovative training of early stage researchers. By closely linking all above research areas, OMA will provide an interdisciplinary education to its Fellows. This will equip them with solid knowledge also in research areas adjacent to their core research field, as well as with business competences and hence give them a perfect basis for a career in research.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: FETOPEN-1-2014 | Award Amount: 3.57M | Year: 2015

CHROMAVISION aims to develop a pioneering chromosome imaging and manipulation platform that will fuel the next decades of structural chromosome research. Chromosomal abnormalities are characteristic of many disorders such as cancer, impaired fertility due to maternal aging, and neurological disorders such as fragile X syndrome. If humanity is to fully understand the wide range of diseases that are associated to errors in cell division, we must be able to further zoom in on healthy and diseased chromosomes in all their complexity. The CHROMAVISION platform will allow molecular biologists to automatically isolate individual chromosomes from small tissue or cell samples and have these delivered to a super-resolution microscope. Chromosome isolation and delivery is achieved by an opto-fluidic chip that is able to trap, visualise and lyse individual cells and separate metaphase chromosomes from cell lysate. Single chromosomes can be hand-selected and brought into focus of the Super-Resolution Correlative Tweezers Fluorescence Microscope (CTFM-SR3D) that is developed in CHROMAVISION. This instrument will for the first time enable 3D, super-resolution, real-time metaphase chromosome observation and manipulation studies under near-physiological conditions. The technique will push the boundaries of what is currently possible in microfluidics and super-resolution microscopy and combine these into a single powerful approach for chromosome studies. Furthermore, the platform will be applied in CHROMAVISION to address key challenges in clinical and fundamental chromosome research, potentially resulting in breakthrough discoveries. Better imaging and understanding of the chromosomal mechanisms will contribute to our knowledge of the etiology of human diseases and aid drug discovery. The platform will also have large clinical value, allowing identification and monitoring of e.g. cancer heterogeneity.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: DRS-07-2014 | Award Amount: 4.32M | Year: 2015

Large scale crises are affecting critical infrastructures with a growing frequency. This is a result of both basic exposure and dependencies between infrastructures. Because of prohibitive costs, the paradigm of protection against extreme events is expanding and now also encompasses the paradigm of resilience. In addition to strengthening and securing systems; system design objectives are now being set, and response planning is being carried out, to facilitate a fast recovery of infrastructure following a large scale incident. With an interconnected European society, countries and infrastructures are increasingly reliant upon their neighbours, both under normal operating conditions and in the event of an incident. Despite this, there is no common European methodology for measuring resilience or for implementing resilience concepts, and different countries and sectors employ their own techniques. There is also no shared, well-developed system-of-systems approach, which would be able to test the effects of dependencies and interdependencies between individual critical infrastructures and sectors. This increases the risk as a result of reliance on critical infrastructures, as well as affects the ability for sharing resources for incident planning due to no common terminology or means of expressing risk. The overall objective of IMPROVER is to improve European critical infrastructure resilience to crises and disasters through the implementation of combinations of societal, organisational and technological resilience concepts to real life examples of pan-European significance, including cross-border examples. This implementation will be enabled through the development of a methodology based on risk evaluation techniques and informed by a review of the positive impact of different resilience concepts on critical infrastructures. The methodology will be cross sectoral and will provide much needed input to standardisation of security of infrastructure.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: NMP-21-2014 | Award Amount: 9.18M | Year: 2015

Currently there is a lack of methodologies for the conservation of modern and contemporary artworks, many of which will not be accessible in very short time due to extremely fast degradation processes. The challenge of NANORESTART (NANOmaterials for the REStoration of works of ART) will be to address this issue within a new framework with respect to the state of the art of conservation science. NANORESTART is devoted to the development of nanomaterials to ensure long term protection and security of modern/contemporary cultural heritage, taking into account environmental and human risks, feasibility and materials costs. The market for conservation of this heritage is estimated at some 5 billion per year, and could increase by a significant factor in the next years due to the wider use of nanomaterials. The new tools and materials developed will represent a breakthrough in cultural heritage and conservation science and will focus on: (i) tools for controlled cleaning, such as highly-retentive gels for the confinement of enzymes and nanostructured fluids based on green surfactants; (ii) the strengthening and protection of surfaces by using nanocontainers, nanoparticles and supramolecular systems/assemblies; (iii) nanostructured substrates and sensors for enhanced molecules detection; (iv) evaluation of the environmental impact and the development of security measures for long lasting conservation of cultural heritage. Within the project the industrial scalability of the developed materials will be demonstrated. NANORESTART gathers centres of excellence in the field of synthesis and characterization of nanomaterials, world leading chemical Industries and SMEs operating in R&D, and International and European centres for conservation, education and museums. Such centres will assess the new materials on modern/contemporary artefacts in urgent need of conservation, and disseminate the knowledge and the new nanomaterials among conservators on a worldwide perspective.


Grant
Agency: GTR | Branch: NERC | Program: | Phase: Research Grant | Award Amount: 530.51K | Year: 2014

Air pollution is the environmental factor with the greatest impact on human health in Europe. Despite substantial emission controls, the complexities of the processes linking emissions and air quality, means that substantial proportions - 80% and 97%, respectively, of the population in Europe lives in cities with levels of particulate matter (PM) and ozone (O3) exceeding EU limit and target values. The two pollutants are estimated to contribute 350,000 and 200,000 premature deaths across Europe. NERCs strategy document states: In the UK, air pollution costs the economy £15 billion every year in damage to human health, not including the cost of damage to our environment and crops. Understanding the key processes driving air quality across the relevant spatial scales, especially during pollution exceedances and episodes, is essential to provide effective prediction for both policymakers and the public. It is particularly important for policy regulators to understand the drivers of local air quality that can be regulated by national policies versus the contribution from regional pollution transported from mainland Europe or elsewhere. Urban areas are of particular concern since as well as being receptors of regional pollution, they have high local emissions from heating and road transport associated with their high population densities. They are also subject to an urban heat island effect which can impact on the chemistry of air pollution. Our overall aim is to use state-of-the-art modelling and measurements to quantify and reduce uncertainties in the key regional and local processes that control poor air quality in urban areas, both for present-day and in the future. This proposal will develop a novel model framework using a nested suite of models to bridge scales from regional to urban for simulating atmospheric composition and weather including urban heat island effects across the UK and over London. The proposal will further exploit state-of-the-art NERC measuements from recent ClearfLo and REPARTEE field campaigns in London bringing together modelling and measurements experts to determine controlling factors of high O3 and PM events. A detailed box model of the chemical environment based on these field measurements will be constructed, and used to calculate in situ chemical production of O3 during both average and episodic conditions. The coupled regional to urban model will be evaluated against these box model and field campaign results as well as extensive network measurements. Multiple approaches will be used to probe the regional and local contributions to O3 during high O3 events. The key processes driving PM episodes will also be determined using speciated field measurements and coupled model results. The role of nitrous acid on O3 and PM oxidation chemistry in urban areas is a key uncertainty that will be quantified. Air pollution events in the UK are usually associated with stagnation events, which in summer may be coincident with heatwaves. During heatwaves weather conditions may alter emission and deposition processes. The relative importance of these processes, such as reduced O3 deposition, that lead to elevated pollution levels will be established. To investigate the impact of future emissions and climate change on urban air quality, high-resolution climate-chemistry simulations that consistently account for changes in chemistry and transport from the regional to city scale will be performed and future impacts on air quality extremes evaluated. Proof of concept studies with the coupled model framework and with high-resolution climate projections demonstrate the viability of the intended research. This proposal comprises a strong collaboration between modelling and measurement scientists spanning the disciplines of fundamental chemistry, atmospheric composition, and climate change, to advance our understanding of the processes driving regional to urban-scale air quality now and in the future.


Grant
Agency: GTR | Branch: NERC | Program: | Phase: Research Grant | Award Amount: 510.21K | Year: 2014

The Atlantic Oceans conveyor belt circulation is a fundamental component of the global climate system, transporting heat from low to high latitudes, and thus warming Northern Europe. The strength of this circulation is thought to have varied abruptly in the past, giving rise to rapid climate changes of more than 10 degrees C in a decade during the last glacial period. Changes of this nature today would have a severe impact on society, so we want to know more about the sensitivity of this circulation. In order to do this, we will study intervals of rapid climate and circulation change in the past. To better understand these past circulation changes we will reconstruct the concentration of radiocarbon in surface and deep waters in the North Atlantic Ocean. This is known as a radiocarbon reservoir age, and it is highly sensitive to the rate of ocean circulation. Therefore, by reconstructing reservoir ages, we can tell how quickly the ocean was circulating during intervals of rapid climate change. We also need to know what the reservoir age was in the past if we want to use radiocarbon as a dating tool, to tell the age of geological and archeological objects and events. Radiocarbon can be thought of as a stopwatch for a geological sample. For a marine sample, however, there is already some time on the clock when we press go. This extra time before starting the clock is the reservoir age, and we must know what it is in order to accurately tell geological time. By reconstructing reservoir ages, we will therefore improve understanding of rapid circulation and climate change, and also improve the most important dating tool used in earth and archeological sciences. To reconstruct radiocarbon reservoir ages we need to measure the radiocarbon content of a sample, and also to know its age independently, so we can work out what was already on the clock when the sample formed. To do this we will make radiocarbon measurements on shells taken from sediment cores from the North Atlantic, and pair them with a range of exciting new techniques that can tell their age. Firstly we will look for layers of volcanic ash in the sediment cores, which we can date using their argon content, and match to precisely dated ash layers in ice cores and on Iceland. Secondly we can look at changes in sea surface temperature records, and match these to the same events that are precisely dated in ice cores. Thirdly we will use the concentration of thorium in sediments to tell how much sediment accumulated between these ash and temperature tie points. Fourthly, we will combine all this information using statistical modelling, which will also provide a good measure of the uncertainty in our results. This work will create maps of reservoir ages and how they changed in the North Atlantic over the last 10 to 50 thousand years, with a special focus on times of rapid climate change. To help us link the reservoir ages to different circulation regimes, we will use a climate model that can simulate radiocarbon. We will make this models ocean circulation operate in different ways, and see which circulations best match our data. This will allow us to better understand how ocean circulation changed in the past to cause rapid climate change, and improve confidence in how ocean circulation may operate in the future. Finally, we will package our reservoir age maps into a tool that can be used by earth scientists and archeologists to improve their radiocarbon dating.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2011.1.1 | Award Amount: 5.16M | Year: 2013

This Trilogy 2 project is a 3-year Small or medium-scale focused research project (STREP) targeting Challenge 1 of the 7th Framework\nProgramme: Pervasive and Trusted Network and Service Infrastructures.\nThe project scope lies entirely within Objective 1.1, Future Networks\nand in particular in bullet c) Novel Internet architectures, management and operation frameworks.\nThe aim of the project is to develop a new Internet architecture based on the concept of the liquid network. A liquid system should ideally allow resources including bandwidth, storage and processing to be used by any application, whether they are contributed by network operators, data centre operators or end systems. Resources form a shared pool and applications can scale up and down in multiple dimensions (storage, processing, bandwidth and energy usage) as needed, in a continuous effort to enhance the users experience as measured in terms of key metrics such as delay and battery life.\nThe main objective of Trilogy 2 is to unlock the value inherent in joining up the pools of liquidity in the Internet. The project will develop more mature liquidity mechanisms addressing the underlying reasons why today liquidity fails to join up across providers, layers and resources. Trilogy 2 will deliver mechanisms for creating liquidity across different types of resources, including cross layer liquidity, cross provider liquidity and cross resource liquidity. In addition, in order to allow the different stakeholders to be willing to create such liquid pools of resources, Trilogy 2 will also provide the means to control the created liquidity though the means of incentives, information exchange and enforcement tools. Finally, Trilogy 2 will use the novel liquidity mechanisms to enable a set of compelling use cases targeting mobile devices and ISPs network infrastructure.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2013.5.5 | Award Amount: 2.79M | Year: 2014

The objective of CAP4Access is to develop and pilot-test methods and tools for collectively gathering and sharing spatial information for improving accessibility. The aim is to exploit the power of online maps and mobile devices for fostering awareness of barriers for individuals with limited mobility and for removing such barriers. CAP4Access helps integrating disabled communities into society (social sustainability), saving public resources e.g. by helping municipalities to focus expenditures (economic sustainability) and also saving natural resources e.g. by facilitating public transport use (ecological sustainability). The project will develop tools and methods for (a) tagging, describing and discussing locations and routes within the built environment according to their accessibility; (b) visualising the data in ways which are intuitive and highly attractive; (c) route planning and navigation; (d) creating awareness and preparing effective measures at local level for eliminating barriers. Data sources will include citizen humans as sensors, sensors in smartphones, and Public Sector Information, e.g. data held by local administrations and of relevance to accessibility (e.g. road surface and width, traffic volumes and speed, elevation, road works). Target groups include people requiring enhanced accessibility; grassroots initiatives supporting people with disabilities; policy-makers, planners and service providers with responsibility for the built environment; and the general public. Rather than setting up a new platform, the tools to be developed will be pilot-tested on established platforms including Wheelmap, WheelchairRouting, and the OSM. This will guarantee that the projects achievements will be fully utilised and maintained beyond the project (3 years). The CAP4Access team consists of an outstanding group of project managers and social researchers, technical researchers, social innovators, and cities, with well-established links to the target groups.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-15-2015 | Award Amount: 6.83M | Year: 2016

CLINICAL PROBLEM AND UNMET NEED There are 11,827 patients with severe structural airway disease in Europe. Even with the current standard of care, when hospitalised this group of patients has a 22% risk of dying. Patients are currently subjected to repeated surgical interventions (stent insertion) which have a high failure rate. Other therapeutic strategies under development include synthetic tracheal scaffolds seeded with patients own stem cells. Preliminary data show that these scaffolds are poorly integrated and are susceptible to infection. TETRA PROJECT Our SME-led project will address the limitations of standard clinical care and competitor products under development and will: - Build on our successful compassionate use experience using autologous stem cell seeded scaffold-tracheal transplants in 48 patients - Follow on from our Phase I 4 patient INSPIRE clinical trial which will improve on the clinical prototype used in compassionate use cases - Conduct a 48 patient Phase II pivotal clinical trial to provide robust, quality data with validated GMP manufacturing processes to support an accelerated route to market for commercial exploitation in this orphan indication - Prepare a dossier for MAA submission BENEFITS Our product, an ATMP, aims to eliminate the need for repeated surgical interventions of high risk and limited efficacy, reduce deaths and improve the quality of life for surviving patients. If treating 20% of the patients with severe structural airway disease, we estimate that in Europe our technology will improve the quality and length of patient lives and result in savings of 517 million per year. We plan to further develop our platform technology to generate other complex tissues/organs such as bowel and liver replacements for clinical applications which will impact the lives of tens of thousands of patient in the EU with bowel and liver diseases.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2014-ETN | Award Amount: 3.91M | Year: 2015

BIOPOL is an interdisciplinary European training network at the interface of cell biology, physics and engineering. BIOPOL aims specifically at the understanding of fundamental mechanochemical principles guiding cellular behaviour and function and their relevance to human disease. A new supra-disciplinary research field is emerging bringing together the fields of molecular cell biology, physics and engineering aiming at an in depth understanding of fundamental cellular mechanochemical principles. BIOPOL combines exactly this required expertise in one joint training program for young researchers. BIOPOL has assembled a unique multidisciplinary consortium bringing together top scientists from the fields of molecular/developmental cell biology, membrane physics, engineering as well as specialists from the private sector. The scientific objectives focus on understanding of fundamental mechanisms of cellular mechanosensing in health and disease, the role of external forces in cell division and mechanochemical regulation of cell polarity including tissue formation. Finally, part of BIOPOLs research program is the further development of cutting edge technologies like advanced atomic force microscopy, novel photonic tools like optical stretcher or innovative organ on a chip technology, exploiting physical cellular properties. BIOPOLs collaborative cutting edge research program is integral part of its training program provided to early stage researcher and is further translated into seven state of the art experimental training stations representing the consortiums expertise. In addition, BIOPOL has developed a 3 years modular curriculum including workshops, summerschools, Business plan competitions and conferences with a specific agenda of transferable skill training elements highly relevant for scientific communication, translational research and in particular entrepreneurship.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: EINFRA-9-2015 | Award Amount: 8.22M | Year: 2016

The overall objective of READ is to implement a Virtual Research Environment where archivists, humanities scholars, computer scientists and volunteers are collaborating with the ultimate goal of boosting research, innovation, development and usage of cutting edge technology for the automated recognition, transcription, indexing and enrichment of handwritten archival documents. This Virtual Research Environment will not be built from the ground up, but will benefit from research, tools, data and resources generated in multiple national and EU funded research and development projects and provide a basis for sustaining the network and the technology in the future. This ICT based e-infrastructure will address the Societal Challenge mentioned in Europe in a Changing World namely the transmission of European cultural heritage and the uses of the past as one of the core requirements of a reflective society. Based on research and innovation enabled by the READ Virtual Research Environment we will be able to explore and access hundreds of kilometres of archival documents via full-text search and therefore be able to open up one of the last hidden treasures of Europes rich cultural hertitage.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-22-2015 | Award Amount: 5.74M | Year: 2016

Major depressive disorder, dementia, anxiety disorders, and substance abuse affect a substantial part of the European older population. Over 70% of Europeans reside in cities, and this percentage will increase in the next decades. Urbanization and ageing have enormous implications for public mental health. Cities pose major challenges for older citizens, but also offer opportunities for the design of policies, clinical and public health interventions that promote mental health. The overall aim of the MINDMAP project is to identify the opportunities offered by the urban environment for the promotion of mental wellbeing and cognitive function of older individuals in Europe. The project will advance understanding by bringing together longitudinal studies across cities in Europe, the US and Canada to unravel the causal pathways and multi-level interactions between the urban environment and the social, behavioural, psychosocial and biological determinants of mental health and cognitive function in older adults. Specifically, the project will (a) assess the impact of the urban environment on the mental wellbeing and disorders associated with ageing, and estimate the extent to which exposure to specific urban environmental factors and policies explain differences in ageing-related mental and cognitive disorders both within as well as between European cities, (b) assess the causal pathways and interactions between the urban environment and the individual determinants of mental health and cognitive ageing in older adults, (c) use agent-based modelling to simulate the effect of urban environmental, prevention and care policies on the trajectories of mental health and cognitive ageing across cities in Europe. Knowledge will significantly contribute to future-proof preventive strategies in urban settings favouring the mental dimension of healthy ageing, the reduction of the negative impact of mental disorders on co-morbidities, and maintaining cognitive ability in old age.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: COMPET-03-2015 | Award Amount: 1.01M | Year: 2016

The project Thin film light-trapping enhanced quantum dot photovoltaic cells: an enabling technology for high power-to-weight ratio space solar arrays (TFQD) aims at developing a new generation of high-efficiency thin-film photovoltaic devices for future solar arrays, by exploiting cross-cutting Key Enabling Technologies as: advanced manufacturing, advanced materials, photonics. The core device is a thin-film III-V solar cell embedding quantum dots and photonic nanogratings to boost the efficiency beyond the thermodynamic limit of conventional single-junction devices. Combining the thin-film approach with the nanostructuring of semiconductor layers allows for a drastic improvement of power-to-weight ratio and mechanical flexibility with respect to currently available space solar cells. The incorporation of quantum dots provides improved radiation and temperature hardness. The TFQD device targets efficiency higher than 30% (AM0), at least an eightfold increase of power-to-weight ratio vs. triple junction III-V solar cells and very low bending radius, allowing for the development of rollable or inflatable solar arrays. Demonstration up to TRL4 will be carried out through on ground testing under representative in orbit conditions over a set of 44 prototypes. The consortium includes four academic partners having a strong position in modelling, epi-layer structuring and development and manufacturing of thin-film III-V solar cells, a SME able to quickly implement the new technology in their thin-film solar cell production line, and a company that is a European leader in satellite systems as early adopter of the developed devices to boost innovation in space solar panels. On account of wafer reuse and simplicity of the epitaxial structures, the TFQD solar cells are less expensive than the current state-of-the-art multi-junction solar cells, thus also important impact potential on terrestrial applications, as first in concentrating photovoltaic systems, is foreseen.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: LCE-16-2014 | Award Amount: 3.40M | Year: 2015

Securing abundant, affordable, and clean energy remains a critical scientific challenge. Fortuitously, large shale formations occur within Europe. As the conventional gas production in Europe peaked in 2004, European shale gas could become a practical necessity for the next 50 years. However, the exploitation of shale gas remains challenging. Further, its environmental footprint is at present poorly quantified. Great care is needed to assess and pursue this energy resource in the safest possible way for the long-term future of Europe whilst protecting the European diverse natural environment. With this in mind, ShaleXenvironmenT assembled a multi-disciplinary academic team, with strong industrial connections. A comprehensive approach is proposed towards ensuring that the future development of shale gas in Europe will safeguard the public with the best environmental data suitable for governmental appraisal, and ultimately for encouraging industrial best practice. The primary objective is to assess the environmental footprint of shale gas exploitation in Europe in terms of water usage and contamination, induced seismicity, and fugitive emissions. Using synergistically experiments and modeling activities, ShaleXenvironmenT will achieve its objective via a fundamental understanding of rock-fluid interactions, fluid transport, and fracture initiation and propagation, via technological innovations obtained in collaboration with industry, and via improvements on characterization tools. ShaleXenvironmenT will maintain a transparent discussion with all stakeholders, including the public, and will suggest ideas for approaches on managing shale gas exploitation, impacts and risks in Europe, and eventually worldwide. The proposed research will bring economical benefits for consultancy companies, service industry, and oil and gas conglomerates. The realization of shale gas potential in Europe is expected to contribute clean energy for, e.g., the renaissance of the manufacturing industry.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: ISSI-1-2015 | Award Amount: 3.44M | Year: 2016

Ensuring the availability of and access to sufficient safe and nutritious food is a key priority that impacts all EU citizens and Horizon 2020 has therefore identified food security as one of the major challenges to be addressed. BGCI, an international network organisation will work with botanic gardens, experienced informal science centres with research expertise in food and food plants, alongside other key organisations to implement the BigPicnic project. This project builds, through the co-creation approach and public debate, public understanding of food security issues and enables adults and young people across Europe and in Africa to debate and articulate their views on Responsible Research and Innovation (RRI) in this field to their peers, scientists and policy makers. The project involves the delivery of low-cost, co-created outreach exhibitions on food security, using the metaphor of a picnic basket; the exhibition will include information, activities and participatory events that engage a broad range of target audiences (adults, schoolchildren and families). Building on audience engagement and data captured from these initial, locally held, exhibitions, the project will run science cafs in publicly accessible and informal engagement areas as well as in botanic gardens, again capturing public views on RRI and food security. The final phase of the project will consolidate the findings of the public engagement to produce two key publications, a report articulating public opinion and recommendations for RRI on food security and a co-creation toolkit that will build capacity for engagement in further science institutions across the EU. A number of case studies on RRI will be provided to support the EU RRI toolkit currently under construction. It is expected that the project evaluation will show organisational learning and change amongst partner institutions. Partners will go on to disseminate training and promotion of RRI for future public engagement.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 3.83M | Year: 2016

The European chemical industry faces some very serious challenges if it is to retain its competitive position in the global economy. The new industries setting up in Asia and the Near East are based on novel process-intensification concepts, leaving Europe desperately searching for a competitive edge. The transition from batch to continuous micro- and milliflow processing is essential to ensure a future for the European fine-chemicals and pharmaceuticals industries. However, despite the huge interest shown by both academia and industrial R&D, many challenges remain, such as the problems of reaction activation, channel clogging due to solids formation and the scaling up of these technologies to match the required throughput. COSMIC, the European Training Network for Continuous Sonication and Microwave Reactors, takes on these challenges by developing material- and energy-efficient continuous chemical processes for the synthesis of organic molecules and nanoparticles. The intersectoral and interdisciplinary COSMIC training network consists of leading universities and industry participants and trains 15 ESRs in the areas of flow technology, millifluidics and external energy fields (ultrasound and microwaves). These energy fields can be applied in structured, continuous milli-reactors for producing high-value-added chemicals with excellent yield efficiencies in terms of throughput, waste minimization and product quality that simply cannot be achieved with traditional batch-type chemical reactors. The chemical processes that are at the heart of COSMICs game-changing research are catalytic reactions and solids-forming reactions. COSMICs success, which is based on integrating chemistry, physics and process technology, will re-establish European leadership in this crucial field and provide it with highly trained young experts ready for dynamic careers in the European chemical industry.


Grant
Agency: Cordis | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

Understanding the human brain is one of the greatest scientific challenges of our time. Such an understanding can provide profound insights into our humanity, leading to fundamentally new computing technologies, and transforming the diagnosis and treatment of brain disorders. Modern ICT brings this prospect within reach. The HBP Flagship Initiative (HBP) thus proposes a unique strategy that uses ICT to integrate neuroscience data from around the world, to develop a unified multi-level understanding of the brain and diseases, and ultimately to emulate its computational capabilities. The goal is to catalyze a global collaborative effort. During the HBPs first Specific Grant Agreement (SGA1), the HBP Core Project will outline the basis for building and operating a tightly integrated Research Infrastructure, providing HBP researchers and the scientific Community with unique resources and capabilities. Partnering Projects will enable independent research groups to expand the capabilities of the HBP Platforms, in order to use them to address otherwise intractable problems in neuroscience, computing and medicine in the future. In addition, collaborations with other national, European and international initiatives will create synergies, maximizing returns on research investment. SGA1 covers the detailed steps that will be taken to move the HBP closer to achieving its ambitious Flagship Objectives.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 3.93M | Year: 2017

We propose a European Training Network that will provide a total of 540 ESR-months of training in Monte Carlo event generator physics and techniques, and related applications in experimental particle physics. Monte Carlo event generators are central to high energy particle physics. They are used by almost all experimental collaborations to plan their experiments and analyze their data, and by theorists to simulate the complex final states of the fundamental interactions that may signal new physics. We will build on the success of our current MCnetITN, by creating a European Training Network incorporating all the authors of current general purpose event generators, with the main purposes of: (a) training a large section of our user base, using annual schools on the physics and techniques of event generators and short-term studentships of Early Stage Researchers as a conduit for transfer of knowledge to the wider community; (b) training the next generation of event generator authors through dedicated PhD studentships; (c) providing broader training in transferable skills through our research, through dedicated training in entrepreneurship and employability and through secondments to non-academic partners. We will achieve these training objectives both through dedicated activities and through our research activities: (d) developing the next generation of higher precision event generators and supporting them for use throughout the LHC era and beyond; (e) playing a central role in the analysis of LHC data and the discovery of new physics there; and (f) extracting the maximum potential from existing data to constrain the modeling of the higher-energy data from the LHC and future experiments.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SC1-PM-18-2016 | Award Amount: 5.42M | Year: 2016

Hearing Loss (HL) is one of the most prevalent chronic diseases and the 5th cause of disability. HL increases the risk of cognitive decline, mental illness, and depression, and leads to social isolation, unemployment/early retirement, loss of income and work discrimination. The pre-eminent management strategy for HL is the provision of Hearing Aids (HAs), although their use is often problematic, costly and with poor overall benefits. The holistic management of HL requires appropriate public health policies for HL prevention, early diagnosis, long-term treatment and rehabilitation; detection and prevention of cognitive decline; protection from noise; and socioeconomic inclusion of HL patients. However, currently the evidential basis for forming such policies is limited. Holistic HL management policies require the analysis of heterogeneous data, including HA usage, noise (TTS) episodes, audiological, physiological, cognitive, clinical and medication, personal, behavioural, life style, occupational and environmental data. EVOTION has access to big datasets of such data from five different organisations and will support their continuous update by real time data produced by sensors and HAs used by HL patients. To utilise these data in forming holistic HL management policies, EVOTION aims to develop an integrated platform supporting: (a) the analysis of the above datasets to enable the identification of causal and other effects amongst them, (b) policy decision making focusing on the selection of effective interventions related to the holistic management of HL, based on the outcomes of (a) and the formulation of related public health policies, and (c) the specification and monitoring of such policies in a sustainable manner. To achieve this aim, EVOTION also brings together public health policy organisations, experts and authorities supporting the formation of the targeted policies and the validation of the EVOTION support for it.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.61M | Year: 2016

Speech is a hugely efficient means of communication: a reduced capacity in listening or speaking creates a significant barrier to social inclusion at all points through the lifespan, in education, work and at home. Hearing aids and speech synthesis can help address this reduced capacity but their use imposes greater listener effort. The fundamental objective of the ETN Enriched communication across the lifespan (ENRICH) is to modify or augment speech with additional information to make it easier to process. Enrichment aims to reduce the listening burden by minimising cognitive load, while maintaining or improving intelligibility. ENRICH will investigate the relationship between cognitive effort and different forms of natural and synthetic speech. Non-intrusive metrics for listening effort will be developed and used to design modification techniques which result in low-burden speech. The value of various enrichment approaches will be evaluated with individuals and cohorts with typically sub-optimal communication ability, e.g., children, hearing-impaired adults, non-native listeners and individuals engaged in simultaneous tasks. The ENRICH consortium consists of 8 beneficiaries and 7 partners from academia, industry and clinical practice in 9 countries, who collectively provide diverse infrastructure for investigating spoken communication and for applying innovations to end-user populations. ENRICH will address the unmet need for multi-skilled practitioners and engineers in this rapidly growing sector currently facing a serious workforce shortage. Through a comprehensive training programme driven by the needs of industry and clinical practice, it will equip fellows with not just the necessary cross-disciplinary knowledge and research techniques, but also with experience of entrepreneurship and technology transfer so they can translate research findings into meaningful products and services that will facilitate spoken language communication in the coming decades.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: HEALTH.2013.2.2.1-4 | Award Amount: 15.74M | Year: 2013

Epilepsy is a devastating condition affecting over 50 million people worldwide. This multidisciplinary project is focused on the process leading to epilepsy, epileptogenesis, in adults. Our main hypothesis is that there are combinations of various causes, acting in parallel and/or in succession, that lead to epileptogenesis and development of seizures. Our central premise and vision is that a combinatorial approach is necessary to identify appropriate biomarkers and develop effective antiepileptogenic therapeutics. The project will focus on identifying novel biomarkers and their combinations for epileptogenesis after potentially epileptogenic brain insults in clinically relevant animal models, such as traumatic brain injury (TBI) and status epilepticus (SE); explore multiple basic mechanisms of epileptogenesis and their mutual interactions related to cell degeneration, circuit reorganization, inflammatory processes, free radical formation, altered neurogenesis, BBB dysfunction, genetic and epigenetic alterations; and translating these findings towards the clinic by validating biomarkers identified from animal models in human post TBI brain tissue and blood samples, post-mortem brain tissue in individuals that died soon after SE, and human brain and blood samples from chronic epilepsy cases. The project will identify novel combinatorial biomarkers and novel disease-modifying combinatorial treatment strategies for epileptogenesis, create an Epilepsy Preclinical Biobank, and validate translational potential of results from animal models in human tissue. To adequately address the proposed goals, the project will develop technological breakthroughs, such as completely novel chemogenetic approaches, novel MRI techniques, novel multimodal organic recording devices for simultaneous recordings of EEG / cellular unit activity and biochemical measurements, novel bioluminescence for in vivo promoter activity analysis, and novel systems biology approaches.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENV.2013.6.1-3 | Award Amount: 11.79M | Year: 2013

With the target of limiting global warming to 2C increasingly difficult to achieve, policymakers, businesses and other decision-makers need to plan to adapt to changes in climate under higher levels of global warming. This requires coherent information on the future climate conditions, and the consequences of different adaptation actions. International negotiations on limiting global warming also require clear information on the consequences of different levels of climate change. While a vast array of projections, scenarios and estimates of future climate change and its impacts already exists, much is conflicting, unclear, of unknown levels of certainty and difficult to use to inform decisions. HELIX addresses this by providing a clear, coherent, internally-consistent view of a manageable number of future worlds under higher levels of global warming reached under a range of circumstances, supported by advice on which aspects are more certain and which less certain. This will be delivered through groundbreaking scientific research across a range of physical, natural and social science disciplines, in close engagement with experienced users of climate change information in order to ensure appropriate focus, clarity and utility. Since international climate policy often frames climate change in terms of levels of global warming relative to pre-industrial state, our research will focus on addressing the questions What do 4C and 6C worlds look like compared to 2C? and What are the consequences of different adaptation choices? Our core product will a set of eight coherent global scenarios of the natural and human world at these levels of warming achieved at different rates and with different pathways of adaptation by society. A second product will provide more detailed information in three focus regions; Europe, Sub-Saharan Africa in the Northern Hemisphere and the South Asia. This will all be supported by a comprehensive analysis of confidence and uncertainty.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2011.5.2 | Award Amount: 16.43M | Year: 2013

MD-Paedigree is a clinically-led VPH project that addresses both the first and the second actions of part B of Objective ICT-2011.5.2:\n1. it enhances existing disease models stemming from former EC-funded research (Health-e-Child and Sim-e-Child) and from industry and academia, by developing robust and reusable multi-scale models for more predictive, individualised, effective and safer healthcare in several disease areas;\n2. it builds on the eHealth platform already developed for Health-e-Child and Sim-e-Child to establish a worldwide advanced paediatric digital repository.\nIntegrating the point of care through state-of-the-art and fast response interfaces, MD-Paedigree services a broad range of off-the-shelf models and simulations to support physicians and clinical researchers in their daily work. MD-Paedigree vertically integrates data, information and knowledge of incoming patients, in participating hospitals from across Europe and the USA, and provides innovative tools to define new workflows of models towards personalised predictive medicine. Conceived of as a part of the VPH Infostructure described in the ARGOS, MD-Paedigree encompasses a set of services for storage, sharing, similarity search, outcome analysis, risk stratification, and personalised decision support in paediatrics within its innovative model-driven data and workflow-based digital repository. As a specific implementation of the VPH-Share project, MD-Paedigree fully interoperates with it. It has the ambition to be the dominant tool within its purview. MD-Paedigree integrates methodological approaches from the targeted specialties and consequently analyzes biomedical data derived from a multiplicity of heterogeneous sources (from clinical, genetic and metagenomic analysis, to MRI and US image analytics, to haemodynamics, to real-time processing of musculoskeletal parameters and fibres biomechanical data, and others), as well as specialised biomechanical and imaging VPH simulation models.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-29-2016 | Award Amount: 5.11M | Year: 2017

X-ray mammography is the mainstay of breast cancer screening programs. It is estimated that between 20 - 50% of abnormal screening mammograms will prove to be negative. The paradigm in diagnosis is to establish whether a lesion is benign or malignant. All the imaging techniques conventionally used today diagnostic x-ray, ultrasonography and magnetic resonance imaging have many limitations, leading to multiple and/or repeat imaging and often unnecessary biopsy. This leads to physical, psychological and economic burdens felt at individual, familial and societal levels. With an aging population, high incidence of breast cancer and tightening health-care budgets, there is an urgent requirement for a non-invasive method for in-depth assessment of the screening-detected lesion. In PAMMOTH we will showcase such an imager, combining photoacoustic and ultrasound imaging. With the use of quantitative image reconstruction of multi-wavelength photoacoustic data, information is gained of the vascular and oxygen status of the lesion relating to tumor physiology and function. From the ultrasound part, we derive ultrasound reflection from the lesion in a manner superior to conventional breast ultrasonography, relating to anatomic features and extent of a tumor. This information will enable the radiologist to come to a diagnosis accurately and rapidly without the use of contrast agents, without pain and discomfort to the patient, while being cost-effective and not requiring complex infrastructure. Four excellent academic groups, three dynamic SMEs, and a hospital come together with support from key stakeholders in an Advisory group, to push beyond the state-of-the-art in science and technology to achieve the PAMMOTH imager. For the SMEs, in addition to tremendous improvements in individual product lines, the new integrated diagnostic imaging instrument opens up completely new market opportunities. We expect PAMMOTH to have a strong economic and clinical impact.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-02-2015 | Award Amount: 5.50M | Year: 2016

EuroPOND will develop a data-driven statistical and computational modeling framework for neurological disease progression. This will enable major advances in differential and personalized diagnosis, prognosis, monitoring, and treatment and care decisions, positioning Europe as world leaders in one of the biggest societal challenges of 21st century healthcare. The inherent complexity of neurological disease, the overlap of symptoms and pathologies, and the high comorbidity rate suggests a systems medicine approach, which matches the specific challenge of this call. We take a uniquely holistic approach that, in the spirit of systems medicine, integrates a variety of clinical and biomedical research data including risk factors, biomarkers, and interactions. Our consortium has a multidisciplinary balance of essential expertise in mathematical/statistical/computational modelling; clinical, biomedical and epidemiological expertise; and access to a diverse range of datasets for sporadic and well-phenotyped disease types. The project will devise and implement, as open-source software tools, advanced statistical and computational techniques for reconstructing long-term temporal evolution of disease markers from cross-sectional or short-term longitudinal data. We will apply the techniques to generate new and uniquely detailed pictures of a range of important diseases. This will support the development of new evidence-based treatments in Europe through deeper disease understanding, better patient stratification for clinical trials, and improved accuracy of diagnosis and prognosis. For example, Alzheimers disease alone costs European citizens around 200B every year in care and loss of productivity. No disease modifying treatments are yet available. Clinical trials repeatedly fail because disease heterogeneity prevents bulk response. Our models enable fine stratification into phenotypes enabling more focussed analysis to identify subgroups that respond to putative treatments.


IMMUNOSABR is geared towards opening up a new paradigm in treating metastatic cancer by obtaining clinical proof of concept for a novel bi-modal curative treatment strategy. High precision stereotactic ablative radiotherapy (SABR) is combined with immunotherapy to form a powerful synergistic anti-tumour strategy. The approach relies on the direct cytotoxic effect of SABR, the abscopal effect of radiation observed at distance from the irradiated metastatic site(s), and the effect of the tumour-specific immunocytokine L19-IL2 (watch our animation explaining the concept at https://youtu.be/6wDE6RkrikA). Palliative treatment is the current standard of care for patients with metastatic non small cell lung cancer (NSCLC), unless there is an actionable mutation. By using the concept of limited metastatic disease (10 sites, WHO 0-1: oligo\) we aim to develop a therapy with curative intent. IMMUNOSABR will gather evidence for the clinical efficacy of our bi-modal treatment strategy in a multicentre randomised phase II study (clinicaltrials.gov no. NCT02735850) in patients with limited metastatic NSCLC. IMMUNOSABR is complemented by two strong biomarker work packages which focus on developing an ambitious personalised biomarker strategy, to identify patients who can benefit from the novel treatment strategy. This includes promising non-invasive imaging techniques and state-of-the-art immunological monitoring approaches on tumour tissue and blood. IMMUNOSABR will spur further development of L19-IL2 as a commercial drug and translate the bi-modal treatment strategy towards clinical implementation.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SC1-PM-01-2016 | Award Amount: 15.04M | Year: 2017

The complex interactions between genetic and non-genetic factors produce heterogeneities in patients as reflected in the diversity of pathophysiology, clinical manifestations, response to therapies, disease development and progression. Yet, the full potential of personalized medicine entails biomarker-guided delivery of efficient therapies in stratified patient populations. MultipleMS will therefore develop, validate, and exploit methods for patient stratification in Multiple Sclerosis, a chronic inflammatory disease and a leading causes of non-traumatic disability in young adults, with an estimated cost of 37 000 per patient per year over a duration of 30 years. Here we benefit from several large clinical cohorts with multiple data types, including genetic and lifestyle information. This in combination with publically available multi-omics maps enables us to identify biomarkers of the clinical course and the response to existing therapies in a real-world setting, and to gain in-depth knowledge of distinct pathogenic pathways setting the stage for development of new interventions. To create strategic global synergies, MultipleMS includes 21 partners and covers not only the necessary clinical, biological, and computational expertise, but also includes six industry partners ensuring dissemination and exploitation of the methods and clinical decision support system. Moreover, the pharmaceutical industry partners provide expertise to ensure optimal selection and validation of clinically relevant biomarkers and new targets. Our conceptual personalized approach can readily be adapted to other immune-mediated diseases with a complex gene-lifestyle background and broad clinical spectrum with heterogeneity in treatment response. MultipleMS therefore goes significantly beyond current state-of-the-art thereby broadly affecting European policies, healthcare systems, innovation in translating big data and basic research into evidence-based personalized clinical applications.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-RISE | Phase: MSCA-RISE-2016 | Award Amount: 279.00K | Year: 2017

We propose to establish an interdisciplinary, intersectoral and international research and innovation network in Crisis Translation, called INTERACT. Crisis Translation is understood here as the translation of written information from one linguistic and cultural system to another in the context of a crisis scenario, with a view to enabling affected communities and responders to be prepared for crises, improve resilience and reduce the loss of lives. Due to the transboundary nature of modern day crises, crisis communication must be multilingual and multilingual crisis communication is enabled through translation. Multilingual information access through translation addresses work programme aims such as social fairness and democratic access to essential information for all. The primary focus of INTERACT is on health-related crisis content. The main objectives of the project are 1) to make meaningful and effective contributions to knowledge, policies, expertise, training and technology that enable accurate and timely translation-enabled crisis communication, with a particular focus on health-related content; 2) to improve outcomes for crisis-affected and at-risk communities by contributing to translation-enabled communication to, with and from those communities; 3) to enhance human skills, competences and cross-sectoral collaboration across academic, humanitarian, and industrial sectors involved in crisis translation. This will be achieved by focusing on five main topics: crisis communication policy, comprehension in limited proficiency communities, crisis machine translation, citizen translator education, and ethics and through collaboration across academic, SME, NGO, and Multinational partners. The contribution of INTERACT will be a much broader, better informed, innovative, much more impactful perspective on the challenges of crisis communication and the role of translation.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-RISE | Phase: MSCA-RISE-2016 | Award Amount: 828.00K | Year: 2017

Osteoarthritis (OA) is a degenerative joint disease, typified by a loss of quality of cartilage and changes in bone at the interface of a joint, resulting in pain, stiffness and reduced mobility. BAMOS project particularly addresses the challenges in OA treatment by providing novel cost effective osteochondral scaffold technology for early intervention of OA to delay or avoid the joint replacement operations. This project has the potential to relieve pain in patients with OA improving their quality of life by keeping people active. It fits with the scope of EU Societal Changellenges to encourage the provision of improved clinical care for patients in the field of healthcare, especially for elderly patients. In the course of developing this new treatment for mid- to late stage OA, BAMOS aims to establish and embed a new collaboration between six internationally leading research organisations (four universities, one healthcare provider and one manufacturer with expertise in additive manufacturing). The partners propose an integrated programme of research activities and the development of a collaborative graduate training scheme. The dissemination of research will result in at least 15 high profile joint research publications, and the consortium will organise two international scientific conferences (one in the EU, one in China) and 3 workshops. BAMOS will develop new materials and manufacturing technologies for the fabrication of custom-tailored osteochondral scaffolds. Novel biopolymeric composites, processed by additive manufacturing, will be characterized and tested as well as coatings on titanium scaffolds. Also, thermal welding technique will be used to join the cartilage component with the bone component to form an osteochondral unit. The new technologies will undergo full pre-clinical evaluation in order that the scaffolds are able to enter clinical trial after the project.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-18-2016 | Award Amount: 3.94M | Year: 2016

Issues of data subjects privacy and data security represent a crucial challenge in the biomedical sector more than in other industries. The current IT landscape in this field shows a myriad of isolated, locally hosted patient data repositories, managed by clinical centres and other organisations, which are subject to frequent and massive data breaches. Patients are disenfranchised in this process, and are not able to have a clear understanding of who uses their personal information and for what purposes. This makes it the ideal field to build and test new models of privacy and data protection, and the technologies that encode them. MyHealthMyData (MHMD) aims at changing the existing scenario by introducing a distributed, peer-to-peer architecture, based on Blockchain and Personal Data Accounts. This approach will determine new mechanisms of trust and of direct, value-based relationships between people, hospitals, research centres and businesses, in what will be the first open biomedical information network centred on the connection between organisations and the individual. The system will develop a comprehensive methodology to guide the implementation of data and identity protection systems, specifically defining approaches and tools to profile and classify sensitive data based on their informational and economic value, to assess the most suitable and robust de-identification and encryption technologies needed to secure different types of information, to allow advanced analytics, and to evaluate the overall reliability of a generic multi modular architecture. MHMD will also analyse users behavioural patterns alongside ethical and cultural orientations, to identify hidden dynamics in the interactions between humans and complex information services, to improve the design of data-driven platforms and to foster the development of a true information marketplace, in which individuals will be able to exercise full control on their personal data and leverage their value.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-21-2015 | Award Amount: 4.47M | Year: 2015

The first and core objective of City4Age is to enable Ambient Assisted Cities or Age-friendly Cities, where the urban communities of elderly people living in Smart Cities are provided with a range of ICT tools and services that - in a completely unobtrusive manner - will improve the early detection of risks related to cognitive impairments and frailty while they are at home or in the move within the city. The second objective is to provide a range of associated tools and services which - with the appropriate interventions - will mitigate the detected risks. The final objective of C4A is to define a model which will provide sustainability and extensibility to the offered services and tools by addressing the unmet needs of the elderly population in terms of (i) detecting risks related to other health type problems, (ii) stimulating and providing incentives to remain active, involved and engaged, (iii) creating an ecosystem for multi-sided market by matching needs and their fulfillments, (iv) contributing to the design and operation of the ultimate Age-friendly City, where the city itself provides support for detecting risks and providing interventions to those affected by mild cognitive impairment (MCI) and frailty. To achieve these objectives City4Age builds on: - behavioural, sociological and clinical research on frailty and MCI in the elderly population; - state of art ICT technology (i) for sensing personal data and exposing them as linked open data, (ii) for designing the algorithms and the APIs to extract relevant behaviour changes and correlated risks, and (iii) for designing interventions to counter the risks, - stakeholder engagement in order to be driven by relevant user needs to ensure end-user acceptance.


Grant
Agency: Cordis | Branch: FP7 | Program: CPCSA | Phase: ICT-2013.9.9 | Award Amount: 72.73M | Year: 2013

Understanding the human brain is one of the greatest challenges facing 21st century science. If we can rise to the challenge, we can gain profound insights into what makes us human, develop new treatments for brain diseases and build revolutionary new computing technologies. Today, for the first time, modern ICT has brought these goals within sight. The goal of the Human Brain Project, part of the FET Flagship Programme, is to translate this vision into reality, using ICT as a catalyst for a global collaborative effort to understand the human brain and its diseases and ultimately to emulate its computational capabilities. The Human Brain Project will last ten years and will consist of a ramp-up phase (from month 1 to month 36) and subsequent operational phases.\nThis Grant Agreement covers the ramp-up phase. During this phase the strategic goals of the project will be to design, develop and deploy the first versions of six ICT platforms dedicated to Neuroinformatics, Brain Simulation, High Performance Computing, Medical Informatics, Neuromorphic Computing and Neurorobotics, and create a user community of research groups from within and outside the HBP, set up a European Institute for Theoretical Neuroscience, complete a set of pilot projects providing a first demonstration of the scientific value of the platforms and the Institute, develop the scientific and technological capabilities required by future versions of the platforms, implement a policy of Responsible Innovation, and a programme of transdisciplinary education, and develop a framework for collaboration that links the partners under strong scientific leadership and professional project management, providing a coherent European approach and ensuring effective alignment of regional, national and European research and programmes. The project work plan is organized in the form of thirteen subprojects, each dedicated to a specific area of activity.\nA significant part of the budget will be used for competitive calls to complement the collective skills of the Consortium with additional expertise.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: HEALTH.2013.2.2.1-4 | Award Amount: 16.45M | Year: 2013

DESIRE will focus on epileptogenic developmental disorders EDD, i.e. early onset epilepsies whose origin is closely related to developmental brain processes. A major cause of EDD are malformations of cortical development (MCD), either macroscopic or subtle. EDD are often manifested as epileptic encephalopathies (EE), i.e. conditions in which epileptic activity itself may contribute to severe cognitive and behavioral impairments. EDD are the most frequent drug-resistant pediatric epilepsies carrying a lifelong perspective of disability and reduced quality of life. Although EDD collectively represent a major medical and socio-economic burden, their molecular diagnosis, pathogenic mechanisms (PM) and rationale treatment are poorly understood. Specific objectives of DESIRE are to advance the state of the art with respect to: (1) the genetic and epigenetic causes and PM of EDD, particularly epileptogenic MCD, to elucidate molecular networks and disrupted protein complexes and search for common bases for these apparently heterogeneous disorders. (2) the diagnostic tools (biomarkers) and protocols through the study of a unique and well-characterized cohort of children to provide standardized diagnosis for patient stratification and research across Europe. (3) treatment of EDD using randomized, multidisciplinary clinical protocols and testing preclinical strategies in experimental models to also address novel preventative strategies. The workplan spans from clinical observation, to whole exome studies, cellular and animal models and basic research, identification of biomarkers and improvement of diagnostic methods, and back to the clinical trials and assessment of innovative, targeted treatment strategies. The consortium partners have an outstanding track record in genetics, basic neurophysiology, neuropathology and clinical research. Specialized expertise will be made available by the SMEs involved to develop novel diagnostic tools for tailored treatment approaches.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-CSA-Infra | Phase: INFRA-2012-1.1.26. | Award Amount: 8.20M | Year: 2013

This project aims at integrating the major European infrastructures in the field of high-resolution solar physics. The following actions will be taken: (i) realise Trans-national Access to external European users; (ii) enhance and spread data acquisition and processing expertise to the Europe-wide community; (iii) increase the impact of high-resolution data by offering science-ready data and facilitating their retrieval and usage; (iv) encourage combination of space and ground-based data by providing unified access to pertinent data repositories; (v) foster synergies between different research communities by organising meetings where each presents state-of-the-art methodologies; (vi) train a new generation of solar researchers through setting up schools and an ambitious mobility programme; (vii) develop prototypes for new-generation post-focus instruments; (vii) study local and non-local atmospheric turbulence, their impact on image quality, and ways to negate their effects; (viii) improve the performance of existing telescopes; (ix) improve designs of future large European ground-and space-based solar telescopes; (x) lay foundations for combined use of facilities around the world and in space; (xi) reinforce partnership with industry to promote technology transfer through existing networks; and (xii) dissemination activities towards society. The project involves all pertinent European research institutions, infrastructures, and data repositories. Together, these represent first-class facilities. The additional participation by private companies and non-European research institutions maximizes the impact on the world-wide scale. In particular, the project achievements will be of principal importance in defining the exploitation of the future 4-meter European Solar Telescope.


Grant
Agency: Cordis | Branch: FP7 | Program: CSA-SA | Phase: SiS.2013.2.2.1-1 | Award Amount: 2.90M | Year: 2014

The overall aim of the EC call is building up a scientifically literate society, which enables its citizens to participate in the research and innovation process as part of Responsible Research and Innovation (RRI). This calls for democratic citizenship education, in which two educational approaches, often presented independently in schools, are integrated, viz. Inquiry-Based Science Education (IBSE) and Socio-Scientific Issues-Based Learning (SSI). We call this integrated approach Socio-Scientific Inquiry-Based Learning (SSIBL). The aim of the project is to collect and share existing best practices across Europe and develop learning tools, materials and in/pre-service training courses for science teachers based on the SSIBL approach. This educational methodology promotes democratic citizenship through the integration of social issues and related scientific knowledge. Our aim is to empower and facilitate science teachers and teacher educators, by in-service and pre-service professional development courses, based on reshaped best practices available among the partners. These shared selected best practices will be reflected on from an RRI perspective and improved by an international community of learners who incorporate RRI in their teaching and learning processes. The project will establish a multidisciplinary team and facilitate networking activities among teachers, teacher educators and educational researchers of 18 institutions in 11 countries. In addition, the project will build on recently developed IBSE insights and foster implementation of IBSE in educational practice.


Grant
Agency: Cordis | Branch: FP7 | Program: MC-IRSES | Phase: FP7-PEOPLE-2013-IRSES | Award Amount: 928.20K | Year: 2014

The DEANN project is a network formation initiative that involves six research institutions and universities from four EU countries and equivalently, six research entities from four Latin American countries. The overall goal is to strengthen research partnership among the participants by developing a shared scientific knowhow in the field of Next Generation Sequencing data analysis. More specifically, the objectives are: (I) To reinforce the collaboration among partner organizations, both between EU and American partners and within EU partners, with the aim of developing long-term research partnerships. (II) To nurse the scientific excellence of the project participants in the field of NGS data analysis, with the aim of improving their position and competitiveness at the international level. (III) To elevate the critical mass and innovation skills of the consortium to act at the forefront of innovative proposals around the usage of NGS-based technologies addressing biomedical and biotechnology problems. (IV) To increase the competence of the project partners in applied genomics research with the aim of reaching translational opportunities in established and emerging economies. (V) To improve education, innovation and international orientation of PhD candidates and post-docs. The DEANN initiative achieves these objectives by creating a network of carefully chosen bioinformatics research labs and putting them to work together in an exchange, training and transference program that specifically serves the goals of the project. The consortium members collectively represent a diversity of expertise domains (Biomedicine, biotechnology and bioinformatics), strategic regional positioning, strong international presence, comprehensive training capability and long term projection.The DEANN exchange program counts with WPs in translational topics of Next Generation Sequencing and includes movement of management and training modules on scientific and transnational skills.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-TP | Phase: NMP.2012.4.0-1 | Award Amount: 5.46M | Year: 2013

In Light.Touch.Matters, product designers and material researchers will collaborate to jointly develop a fully new generation of smart materials that combine touch sensitivity with luminosity, based on latest developments in polymeric piezo materials and flexible OLEDs. Manufactured on plastic substrates, these novel light touch materials will be thin, flexible and formable, allowing seamless integration into products. They promise to greatly expand design freedom and unlock totally new modes of product-user interaction, enabling us to take the next step in product design: using touch sensitivity and luminosity to produce simple, affordable and intuitive user interfaces so that eventually the product becomes the user interface. Light.Touch.Matters focuses on products for care and well-being applications that can help consumers feel better, monitor or improve their health and increase comfort, such as rehabilitation aids, wearable alarms, and diet coaches, though we expect strong spin-off to other sectors. Light.Touch.Matters will use a proprietary design-driven research methodology based a comprehensive body of industrial product design knowledge that has been built up over the past decades. It consists of iterated cycles of materials-inspired and design-driven materials research with direct and prolonged design-researcher interaction, leading to a convergence of the conceptual designs and feasible materials in 4-6 interaction showcases. Analysis of results will include end user value, commercial value and environmental impact (LCA/critical materials). The design-driven research on integrated piezo plastics and OLEDs can directly contribute to innovation and competitiveness in a large number of related sectors, many of which are strategic to the EU: not only design, (health)care and consumer goods, but also the chemical, automotive and printing industries, as well as mechanical-, electrical-, packaging- and systems engineering.


Grant
Agency: Cordis | Branch: FP7 | Program: MC-IRSES | Phase: FP7-PEOPLE-2013-IRSES | Award Amount: 831.10K | Year: 2014

The overall aim of the proposed staff exchange programme is to establish a long lasting collaboration between Moroccan, South African and European research teams involved in clinical epidemiological and public health research. This effort should ultimately lead to improved mother and child health and better control of sexual transmitted diseases. The proposal is therefore structured in seven work packages: 1. Management and coordination 2. Maternal & newborn health research 3. STI research 4. HPV research 5. Antibiotic resistance 6. Public Health and Social Health Protection 7. Clinical, epidemiological and public health research This project will brings partners together from Europe, Morocco and South Africa that have common research interests but that work in very different settings. Several partners have already been collaborating with each other but mainly on an ad hoc basis and not as a network: 1. The International Health Research Centre of Barcelona (CRESIB), Spain 2. The Institute of Tropical Medicine (ITM), Antwerp, Belgium 3. University Mohamed V Soussi Rabat, Morocco 4. University Sidi Mohamed Ben Abdellah of Fez, Morocco 5. University of Marrakech, Morocco 6. The Ministry of Health of Morocco - National Institute of Health Administration (INAS) 7. University of KwaZulu-Natal (UKZN), South Africa 8. University of Southampton, United Kingdom 9. The Bordeaux School of Public Health (ISPED), University Bordeaux Segalen, France For European researchers and professionals, the interaction with Moroccan and South African national health systems and research groups can contribute to a better understanding of common health challenges, including health related topics with human mobility and migrations between both continents and access to care for migrant groups in Europe. This collaboration involving several high profile groups (Europe, Morocco, South Africa) strengthens a global perspective on key maternal, newborn and reproductive health topics.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: INFRAIA-1-2014-2015 | Award Amount: 10.23M | Year: 2015

The Europlanet 2020 Research Infrastructure (EPN2020-RI) will address key scientific and technological challenges facing modern planetary science by providing open access to state-of-the-art research data, models and facilities across the European Research Area. Its Transnational Access activities will provide access to world-leading laboratory facilities that simulate conditions found on planetary bodies as well as specific analogue field sites for Mars, Europa and Titan. Its Virtual Access activities will make available the diverse datasets and visualisation tools needed for comparing and understanding planetary environments in the Solar System and beyond. By providing the underpinning facilities that European planetary scientists need to conduct their research, EPN2020-RI will create cooperation and effective synergies between its different components: space exploration, ground-based observations, laboratory and field experiments, numerical modelling, and technology. EPN2020-RI builds on the foundations of successful FP6 and FP7 Europlanet programmes that established the Europlanet brand and built structures that will be used in the Networking Activities of EPN2020-RI to coordinate the European planetary science communitys research. It will disseminate its results to a wide range of stakeholders including industry, policy makers and, crucially, both the wider public and the next generation of researchers and opinion formers, now in education. As an Advanced Infrastructure we place particular emphasis on widening the participation of previously under-represented research communities and stakeholders. We will include new countries and Inclusiveness Member States, via workshops, team meetings, and personnel exchanges, to broaden/widen/expand and improve the scientific and innovation impact of the infrastructure. EPN2020-RI will therefore build a truly pan-European community that shares common goals, facilities, personnel, data and IP across national boundaries


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: ICT-14-2014 | Award Amount: 8.26M | Year: 2015

Virtualisation and software networks are a major disruptive technology for communications networks, enabling services to be deployed as software functions running directly in the network on commodity hardware. However, deploying the more complex user-facing applications and services envisioned for 5G networks presents significant technological challenges for development and deployment. SONATA addresses both issues. For service development, SONATA provides service patterns and description techniques for composed services. A customised SDK is developed to boost the efficiency of developers of network functions and composed services, by integrating catalogue access, editing, debugging, and monitoring analysis tools with service packaging for shipment to an operator. For deployment, SONATA provides a novel service platform to manage service execution. The platform complements the SDK with functionality to validate service packages. Moreover, it improves on existing platforms by providing a flexible and extensible orchestration framework based on a plugin architecture. Thanks to SONATAs platform service developers can provide custom algorithms to steer the orchestration of their services: for continuous placement, scaling, life-cycle management and contextualization of services. These algorithms are overseen by executives in the service platform, ensuring trust and resolving any conflict between services. By combining rapid development and deployment in an open and flexible manner, SONATA is realising an extended DevOps model for network stakeholders. SONATA validates its approach through novel use-case-driven pilot implementations and disseminates its results widely by releasing its key SDK and platform components as open source software, through scientific publications and standards contributions, which, together, will have a major impact on incumbent stakeholders including network operators and manufacturers and will open the market to third-party developers.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.4.2-1 | Award Amount: 7.19M | Year: 2013

Chronic pain is estimated to affect 15-20% of children with varying disabilities. Due to the paucity of clinical information and appropriate medicinal products, in clinical practice paediatric patients are often under-treated causing profound impact on their QoL. To date, opioids, non-steroid anti-inflammatory drugs (NSAIDs), antidepressants and anticonvulsants are used to treat pain, but only few of these include a paediatric authorisation. In addition, the few available paediatric drugs have a very different authorisation profile across Europe and, when not approved in paediatrics, they are used off-label to cover the high therapeutic need, thus exposing children to unnecessary risks of dosing errors and increasing ADRs. The GAPP Project is focused on the development of gabapentin for the treatment of paediatric chronic pain, a condition where gabapentin, as demonstrated in adults, is expected to bring great benefit to children. To this end, a large international scientific Consortium is set up, with experienced professionals in the field of pain that will work together with a Pharmaceutical Company committed to apply for a PUMA using the project results. Within GAPP, age-appropriate formulation will be developed and two randomised, comparator-controlled clinical trials and a bridging study will be conducted in compliance to a submitted Paediatric Investigation Plan (PIP, Summary Report Day 90 - EMEA-001310-PIP01-12) in order to investigate appropriate dosages, efficacy and safety of gabapentin in the paediatric population. Further to this, in order to ensure the safety of gabapentin in very young children, a non clinical study will be conducted to evaluate the neurotoxic potentil of the drug. At the end of the project, gabapentin can be proposed for treatment of chronic pain in children both as monotherapy and as adjuvant therapy.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-SICA | Phase: NMP.2012.2.2-6 | Award Amount: 5.15M | Year: 2013

The project brings together a consortium of EU and ASEAN researchers with the aim of developing a solar powered photocatalytic waste-water treatment system capable of mineralising the recalcitrant organic matter that is not removed by current biological methods. With an emphasis on generating novel materials and new understandings of photocatalytic materials and processes, the interdisciplinary team aims to develop cost effective prototype photocatalytic reactors capable of deployment in remote areas and of treating contaminated water from small scale industrial producers at rates of up to 500 m3 of a day.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: INFRAIA-1-2014-2015 | Award Amount: 13.00M | Year: 2015

Particle physics is at the forefront of the ERA, attracting a global community of more than 10,000 scientists. With the upgrade of the LHC and the preparation of new experiments, the community will have to overcome unprecedented challenges in order to answer fundamental questions concerning the Higgs boson, neutrinos, and physics beyond the Standard Model. Major developments in detector technology are required to ensure the success of these endeavours. The AIDA-2020 project brings together the leading European infrastructures in detector development and a number of academic institutes, thus assembling the necessary expertise for the ambitious programme of work. In total, 19 countries and CERN are involved in this programme, which follows closely the priorities of the European Strategy for Particle Physics. AIDA-2020 aims to advance detector technologies beyond current limits by offering well-equipped test beam and irradiation facilities for testing detector systems under its Transnational Access programme. Common software tools, micro-electronics and data acquisition systems are also provided. This shared high-quality infrastructure will ensure optimal use and coherent development, thus increasing knowledge exchange between European groups and maximising scientific progress. The project also exploits the innovation potential of detector research by engaging with European industry for large-scale production of detector systems and by developing applications outside of particle physics, e.g. for medical imaging. AIDA-2020 will lead to enhanced coordination within the European detector community, leveraging EU and national resources. The project will explore novel detector technologies and will provide the ERA with world-class infrastructure for detector development, benefiting thousands of researchers participating in future particle physics projects, and contributing to maintaining Europes leadership of the field.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: EURO-1-2014 | Award Amount: 2.50M | Year: 2015

In response to the European debt crisis and associated deep recession, a number of important steps have recently been taken towards redesigning the institutional architecture of EMU, based on the roadmap outlined in the Van Rompuy Report (2012). But these institutional innovations in particular the fiscal compact, the ESM, the SSM and the SRM retain relatively weak theoretical foundations. In particular, there is a noticeable gap between policy-oriented analyses of the precise EU challenges, and the major developments in dynamic macroeconomic theory of the past three decades. ADEMU brings together eight research groups from leading European institutions with the aim of closing this gap. It studies the overall monetary and fiscal structure of the EU and the euro area, and the mechanisms of fiscal policy coordination among member states, with specific focus on: i) ensuring the long-term sustainability of EMU, addressing issues such as debt overhang, fiscal consolidation, public debt management, risk-sharing within the union, and crisis management mechanisms; ii) building resilience to economic shocks, with special emphasis on the coordination of fiscal policies, fiscal multipliers and labor market risks; and iii) managing interdependence in the euro area, analyzing both fiscal and financial spillovers and the effects of macroeconomic imbalances on financial and money markets, and, to confront these issues, new forms of banking regulation and monetary policy. ADEMU is at the frontier of dynamic macroeconomic research, and the project will generate new knowledge that will be used to provide a rigorous assessment of the current institutional framework, and detailed proposals for improving it. It will also be a focal point in debates among academics, policymakers and other stakeholders regarding the implementation of new policies. The scope of the project will include a full consideration of political economy and legal dimensions to alternative institutional reforms


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: EINFRA-1-2014 | Award Amount: 19.05M | Year: 2015

EUDAT2020 brings together a unique consortium of e-infrastructure providers, research infrastructure operators, and researchers from a wide range of scientific disciplines under several of the ESFRI themes, working together to address the new data challenge. In most research communities, there is a growing awareness that the rising tide of data will require new approaches to data management and that data preservation, access and sharing should be supported in a much better way. Data, and a fortiori Big Data, is a cross-cutting issue touching all research infrastructures. EUDAT2020s vision is to enable European researchers and practitioners from any research discipline to preserve, find, access, and process data in a trusted environment, as part of a Collaborative Data Infrastructure (CDI) conceived as a network of collaborating, cooperating centres, combining the richness of numerous community-specific data repositories with the permanence and persistence of some of Europes largest scientific data centres. EUDAT2020 builds on the foundations laid by the first EUDAT project, strengthening the links between the CDI and expanding its functionalities and remit. Covering both access and deposit, from informal data sharing to long-term archiving, and addressing identification, discoverability and computability of both long-tail and big data, EUDAT2020s services will address the full lifecycle of research data. One of the main ambitions of EUDAT2020 is to bridge the gap between research infrastructures and e-Infrastructures through an active engagement strategy, using the communities that are in the consortium as EUDAT beacons and integrating others through innovative partnerships. During its three-year funded life, EUDAT2020 will evolve the CDI into a healthy and vibrant data-infrastructure for Europe, and position EUDAT as a sustainable infrastructure within which the future, changing requirements of a wide range of research communities are addressed.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: INFRASUPP-7-2014 | Award Amount: 496.58K | Year: 2015

We live in the age of the data deluge, where digital technology enables us to store petabytes of data and to make that available for sharing as open data. Sharing data has the potential to revolutionise the way that researchers work. It avoids costly duplication in the collecting of data and enables research collaborations across the world which otherwise would not be possible. The purpose of this bid is to take the LERU Roadmap for Research Data produced by the League of European Research Universities (LERU) and to develop this in order to build a coordinated e-infrastructure across Europe and beyond. LEARN will deliver a model research Research Data Management (RDM) policy, a Toolkit to support implementation, and an Executive Briefing in five core languages so as to ensure wide outreach. LEARN will hold a series of Workshops within four European countries and one international country. The workshops will serve to advocate the Recommendations on RDM and open data made by the LERU Roadmap, and gain feedback from Workshop attendees for a new Toolkit of best practice. Furthermore, guidance to implement the Roadmap will be provided following identification of Best Practices supported by case studies identified through the workshops. By producing an exemplar RDM policy, which could then be tailored by any university or research institution to meet their needs, LEARN aims to address the challenges of the Work Programme concerning the fragmentation of e-infrastructures and the need to maximize on global research data. Specifically, LEARN will address Stakeholder initiatives; Policy coordination; Take-up of digital infrastructures; and Support cooperation with developing countries. LEARN thus delivers support actions to quicken the take-up of RDM and the move to open data in the emerging world of Science 2.0.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 169.32K | Year: 2015

Advances in fit for use manufacturing of biopharmaceutical drug delivery and pharmaceutical systems are now required to fit Quality by Design (QbD) models. These current regulations require excellence to be built into the preparation of emerging products (both material and process) thereby leading to product robustness and quality. In addition, industrial needs (economical and reproducible quality enhancement) are driving manufacturing towards continuous processes over batch type processes which also rely on QbD (for integrity and quality). EHDA technology is a robust process that has been utilised in various formats (e.g. electrospinning, electrospraying, bubbling and even 3D printing) and is favourable due to applicability with the development of stable nanomedicines and biopharmaceuticals, the emergence of this technology is clearly evident in the UK and on the global scale. Attempts in scaling up (for suitable pharmaceutical scale) and in tandem with continuous processes (including controlled manufacturing) have been very limited. There also, now, remains a huge void in the adaptation of sensible QbD (multi-variate) for the current methods developed and also those required by industry. While lab scale research continues with the ongoing development of such processes (e.g. nanomedicines, smart and controlled delivery), the transition to industry or the clinic will have to meet these regulations (and scales) for there to be a real impact, which is now, also, an important aspect of grass root research in the UK. The EHDA network brings together specialists from academia and industry to advance this technology through several means. Firstly, initiating developments towards a real-viable scale for Pharmaceutical production. Secondly, to incorporate developments in lean manufacturing and legislation (e.g. continuous manufacturing, online diagnostics, QbD and adaptable scale). Thirdly, to marry optimised lean technologies with novel and emerging macromolecular therapies and actives. The network has a wide range of activities and initiatives which will lead to significant developments (and collaborations) in an area of increasing global interest (EHDA processes) - but currently only on a viable lab scale to date. This network will be the first of its kind and will serve as the central and pioneering hub in this remit.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: MG-5.3-2014 | Award Amount: 3.98M | Year: 2015

CREATE addresses the task Tackling Urban Road Congestion, taking a long-term view of how this can be achieved, especially in cities experiencing rapid growth in car ownership and use. It deals with most of the issues set out in the recent Urban Mobility Package. Objectives: Rigorously and systematically develop practical definitions of urban road congestion and of network performance, and identify factors influencing conditions in different cities. Work with Western European (WE) cities that have succeeded in decoupling traffic growth from economic growth, to analyse quantitatively the objective factors which have contributed to this, and the qualitative factors which have enabled a policy evolution from supporting traffic growth to encouraging sustainable mobility. Develop concrete guidance and provide capacity building for cities in Central and Eastern Europe (CEE), and the EuroMed region, enabling them to move rapidly to develop a feasible, effective and deliverable Sustainable Urban Mobility Plan (SUMP). Anticipating future pressures on city transport systems (congestion and overcrowding), to investigate how new transport technologies might increase transport efficiency, and how non-transport technologies and changes in business and social practices could reduce pressures on transport systems. These objectives will be achieved by: Analysing congestion and network performance data provided by INRIX and WE cities. Using detailed household travel data from repeat surveys in WE cities since the 1970s/1980s and complementary data on network, economic and demographic conditions; and documents setting out historical policy development. Preparing detailed guidance and training for our CEE cities, which will then be delivered to a much larger set of cities. Working with leading technology providers, businesses and futurists, to explore what options there might be to provide high quality mobility in cities facing increasing population and employment.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: FETOPEN-01-2016-2017 | Award Amount: 5.73M | Year: 2017

We envision a radical redesign of Earth observation platforms for sustained operation at significantly lower altitudes than the current state of the art, using a combination of new aerodynamic materials, aerodynamic control and air-breathing electric propulsion for drag-compensation, for a variety of observation methods with the aim of creating a new platform paradigm. This vision requires foundational research in spacecraft aerodynamic characterization, in material aerodynamics and atomic oxygen resistance, in electric propulsion, and control methods. These activities are by their nature multidisciplinary covering atmospheric science, surface chemistry and material characterization, control engineering, spacecraft design, payload engineering, etc.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-12-2016 | Award Amount: 4.99M | Year: 2016

Todays Internet is becoming increasingly centralised, slowing innovation and challenging its potential to revolutionise society and the economy in a pluralistic manner. DECODE will develop practical alternatives through the creation, evaluation and demonstration of a distributed and open architecture for managing online identity, personal and other data, and collective governance in a citizen-friendly and privacy-aware fashion. Strong digital rights that makes it possible for data subjects to determine access rights to their information through flexible entitlements and open standard-based agreements regarding data governance (on the model of Creative Commons licenses) will be woven into the technological architecture. DECODE will increase digital sovereignty of European citizens by enabling them to produce, access and control their data and exchange contextualised information in real-time, and in a confidential, and scalable manner. DECODE will develop a modular privacy-aware IoT hub with a free and open source operating system backed by a state of the art blockchain infrastructure supporting smart-contracts and privacy protections. The architecture will be demonstrated through four pilots in Barcelona and Amsterdam, in the field of digital democracy, citizen sensing, and collaborative economy. The pilots will be run with the active involvement of social entrepreneurs, hackers, and makers. Innovators will be able to build solutions on top of the platform through hackathons and open challenges, while ensuring their security, resilience and privacy preserving qualities. This aims to create a decentralised innovation ecosystem that will attract a critical mass able to shift the current centralised data-driven economy towards a decentralised, sustainable and commons-based economy. DECODE puts agency and data control in the hands of citizens, to improve citizens well-being and society for the collective benefit of all.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: BG-01-2015 | Award Amount: 9.21M | Year: 2016

ATLAS creates a dynamic new partnership between multinational industries, SMEs, governments and academia to assess the Atlantics deep-sea ecosystems and Marine Genetic Resources to create the integrated and adaptive planning products needed for sustainable Blue Growth. ATLAS will gather diverse new information on sensitive Atlantic ecosystems (incl. VMEs and EBSAs) to produce a step-change in our understanding of their connectivity, functioning and responses to future changes in human use and ocean climate. This is possible because ATLAS takes innovative approaches to its work and interweaves its objectives by placing business, policy and socioeconomic development at the forefront with science. ATLAS not only uses trans-Atlantic oceanographic arrays to understand and predict future change in living marine resources, but enhances their capacity with new sensors to make measurements directly relevant to ecosystem function. The ATLAS team has the track record needed to meet the projects ambitions and has already developed a programme of 25 deep-sea cruises, with more pending final decision. These cruises will study a network of 12 Case Studies spanning the Atlantic including sponge, cold-water coral, seamount and mid-ocean ridge ecosystems. The team has an unprecedented track record in policy development at national, European and international levels. An annual ATLAS Science-Policy Panel in Brussels will take the latest results and Blue Growth opportunities identified from the project directly to policy makers. Finally, ATLAS has a strong trans-Atlantic partnership in Canada and the USA where both government and academic partners will interact closely with ATLAS through shared cruises, staff secondments, scientific collaboration and work to inform Atlantic policy development. ATLAS has been created and designed with our N American partners to foster trans-Atlantic collaboration and the wider objectives of the Galway Statement on Atlantic Ocean Cooperation.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: FETOPEN-01-2016-2017 | Award Amount: 2.89M | Year: 2017

This H2020-FETOPEN-2016-2017 proposal initiates a major international effort to direct polymorphism in pharmaceutical compounds through crystallizing in high magnetic fields. The ability to direct polymorphism would have a transformative effect on almost all pharmaceutical compounds, and hence on society. It is proposed that MagnaPharm will drive forward innovation in pharmaceuticals by exploiting our new discovery that the polymorph and properties of carbamazepine, indomethacin and coronene can be controlled through the application of magnetic fields. We will apply our method to a range of pharmaceutical compounds, as guided by our project partner AstraZeneca, one of the largest pharmaceutical companies in the world. We will initially target 12 of the most high-profile, high-worth generic drugs with the aim of controllably synthesizing the desired polymorph of each (the lowest-energy polymorph and/or most processable form with desired properties). We aim for this goal via an international multidisciplinary approach centred around our discovery, underpinned by the development of a profound theoretical understanding of the effects of magnetic fields on organic crystal growth, that will direct the synthetic effort, all drawing on results from cutting edge spectroscopic and crystallographic characterisations. With the 12 representative generic drug molecules targeted in the initial stages of MagnaPharm responsible for 18 billion of sales per year worldwide, and the development of many new pharmaceuticals being hampered by solid form issues, control over the production of the most pharmaceutically desired crystal is a truly paradigm-shifting prospect.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: INFRADEV-02-2016 | Award Amount: 9.05M | Year: 2017

The European Solar Telescope (EST) will be a revolutionary Research Infrastructure that will play a major role in answering key questions in modern Solar Physics. This 4-meter class solar telescope, to be located in the Canary Islands, will provide solar physicists with the most advanced state-of-the-art observing tools to transform our understanding of the complex phenomena that drive the solar magnetic activity. The principal objective of the present Preparatory Phase is to provide both the EST international consortium and the funding agencies with a detailed plan regarding the implementation of EST. The specific objectives of the proposed preparatory phase are: (1) to explore possible legal frameworks and related governance schemes that can be used by agencies to jointly establish, construct and operate EST as a new research infrastructure, with the implementation of an intermediate temporary organisational structure, as a previous step for future phases of the project; (2) to explore funding schemes and funding sources for EST, including a proposal of financial models to make possible the combination of direct financial and in-kind contributions towards the construction and operation of EST; (3) to compare the two possible sites for EST in the Canary Islands Astronomical Observatories and prepare final site agreements; (4) to engage funding agencies and policy makers for a long-term commitment which guarantees the construction and operation phases of the Telescope; (5) to involve industry in the design of EST key elements to the required level of definition and validation for their final production; (6) to enhance and intensify outreach activities and strategic links with national agencies and the user communities of EST. To accomplish the aforementioned goals, this 4-year project, promoted by the European Association for Solar Telescopes (EAST) and the PRE-EST consortium, encompassing 23 research institutions from 16 countries, will set up the Project Office


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: EUJ-03-2016 | Award Amount: 2.06M | Year: 2016

Information access on the Internet is exploding. Usage is shifting to multimedia applications, social networking and IoE. Cellular networks are moving to the next generation. Networking technology is shifting towards virtualization, with SDN and NFV likely to change the infrastructure landscape. The cloud concept is transforming the Internet to a network of data centers, with a communication model consisting of computer-to-cloud-to-computer interactions. Security concerns are leading to an encryption of all traffic, wreaking havoc with established network mechanisms. In this scenario with dramatic growth and evolution, where abstractions and interfaces become fundamental, ICN is just the perfect solution. ICN2020 will build on the wealth of studies performed on ICN with six main aims: a) design and develop a set of innovative applications such as video delivery, interactive videos and social networks to exploit ICN; b) augment ICN with IoT features and cloud/CDN/virtualization services; c) accordingly enhance existing ICN solutions/architectures; d) build local and global test-bed(s) to experiment the applications, services and ICN enhancements; e) contribute to common APIs and standards, by continuing the work that project partners are already doing; and f) Industry POCs of products and services exploiting ICN. The ICN2020 consortium includes leading experts in ICN and contributors to ICN testbeds in EU, Japan and USA, thus making the goal of federating them a credible one. Partners are also coordinators of running projects on 5G and Cloud topics, allowing fruitful cooperation with fellow projects of the EU-JP1, EU-JP2 calls and increasing the overall expected impact of the EU-Japan cooperation. In a time when 5G networks are being designed, with foreseen unprecedented flexibility due to the virtualization and slice concepts, the development of compelling demonstrations of ICN for real-world use-cases will encourage critical industry investment of resources.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: SEC-2013.2.1-2;SEC-2013.4.1-2 | Award Amount: 4.72M | Year: 2014

FORTRESS will identify and understand cascading effects by using evidence-based information from a range of previous crisis situations, as well as an in-depth analysis of systems and their mutual interconnectivity and (inter-)dependency. FORTRESS will seek to intervene in current crisis response practices by bridging the gap between the over-reliance on unstructured information collection on one side and a lack of attention to structural, communication and management elements of cross-border and cascading crisis situations on the other. It will use state of the art information collection and modelling tools to assist stakeholders in evaluating what information is significant, relevant and of greater priority so that they can adjust their actions accordingly. It will do so by using evidence-based information from historical crisis case studies (WPs 2 and 3), as well as comprehensive analysis of the different relationships between systems (WP 4), and systems and sensitivity information from current crisis management contexts and practices in four system simulations (WP 5). This will enable FORTRESS to build a collaborative and accesible, modelling platform for cascading and cross-border effects in a range of crisis situations (WP 6). This will feed into the development of the FORTRESS Incident Evolution Tool (FIET) in WP7; a user-friendly tool with cross-border capabilities that can be used in a cascading crisis. FIET can be used as a foresight tool to assist decision-makers in understanding the potential effects of their decisions in training environments. FIET is also a decision support tool that is user-friendly enough to be employed during a crisis to assist real-time decision making. FIET will be subject to rigorous testing in the field to evaluate its effectiveness, and the project will ensure its user-friendliness by undertaking extensive training with decision-makers to optimise the look and feel of the system (WP 8).


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2012.2.3.2-2 | Award Amount: 7.80M | Year: 2013

Persons with HIV on combination antiretroviral therapy (cART) are at increased risk of the premature development of age-associated non-communicable comorbidities (AANCC), including cardiovascular, chronic kidney, liver and pulmonary disease, diabetes mellitus, osteoporosis, non-AIDS associated malignancies, and neurocognitive impairment. It has therefore been hypothesised that such individuals, despite effective cART, may be prone to accelerated ageing. The underlying pathogenesis is likely to be multifactorial and include sustained immune activation, both systemically and within the central nervous system. By building on an established infrastructure for conducting longitudinal HIV cohort studies in Amsterdam and London, we will provide a detailed, prospective evaluation of AANCC among HIV-infected patients suppressed on cART and appropriately chosen and comparable non-infected controls. In this way, we will provide a robust estimate of the effect of treated HIV infection on the prevalence, incidence and age of onset of AANCC, thus clearly establishing a link between HIV and AANCC. Through the Human Immune System (HIS) mouse model, experimental studies will permit us to differentiate the effects of HIV and cART on metabolic outcomes when applied under controlled conditions, thereby further elucidating the causative nature of the link between HIV and AANCC. To further clarify potential pathogenic mechanisms underlying this causative link, including the possible induction of an inflammation-associated accelerated ageing phenotype, biomarkers which reflect each of these mechanisms will be investigated in biomaterial obtained from HIS mice and humans, and subsequently validated in patients with HIV on cART. The successful execution of the experimental and clinical research outlined in this proposal will be ensured through a strong interdisciplinary collaboration between clinical, basic and translational scientists bridging the fields of HIV, AANCC and ageing.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2011.5.2 | Award Amount: 5.17M | Year: 2013

Breast cancer is frequent and life threatening, but curable if detected early. Early detection and comprehensive characterisation of findings require optimized imaging and image understanding to maximise detection of significant disease while preventing overdiagnosis. Personalised predictive modeling of breast cancer allows treatment stratification, preventing unnecessary and unsuccessful treatments. VPH-PRISM addresses these key topics with integrated multidisciplinary, multi-scale ICT modeling of breast tissue microstructure in the context of environmental, genetic, and clinical factors.Key challenges include establishment of combined biomarkers from the automated analysis and spatial correlation of digital pathology and advanced breast imaging. Tissue characterisation includes the peritumoral stroma, a key in tumour progression and therapy response. Comprehensive clinical breast cancer phenotypes are extracted from prospectively collected multidisciplinary data. Interactions of environmental and genetic factors with specific breast tissue patterns are analysed in three large ongoing population-based imaging cohorts. A standard breast model enables efficient, combined statistical modeling of sparsely sampled and heterogeneous, large-scale data across disciplines, scales, structures, time and patients.Using the developed tools and models, and the data collected, we will: improve estimates of tumour spread to aid surgery and assess chemo- and radiotherapeutic response optimise multi-modal imaging methods through biophysical forward modeling of image formation for more efficient phenotyping and imaging biomarkers predict personal risks for cancer progression and select optimal treatment strategiesVPH-PRISM will provide a proof of concept for multidisciplinary model based discovery of environment-tissue interactions, quantitative drug efficacy assessment, surgery planning, and treatment outcome prediction at early and advanced stages of breast cancer.


Human balance is achieved and maintained by a complex set of sensorimotor systems that include sensory input from vision, proprioception and the vestibular system (motion, equilibrium, spatial orientation); integration of the sensory input; and motor output to the muscles of the eye and body. Failure at the level of the sensory inputs or at the integration of the sensory information by the central nervous system may lead to a variety of age spanning diseases which affect balance. This complexity leads to undiagnosed or under-treated patients with balance disorders for long periods and results in large socio-economic costs.The EMBalance project aims to extend existing but generic and currently uncoupled balance modelling activities leading to a multi-scale and patient-specific balance Hypermodel, which will be incorporated to a Decision Support System, towards the early diagnosis, prediction and the efficient treatment planning of balance disorders. Various data will feed the intelligent system increasing the dimensionality and personalization of the system. Human Computer Interaction techniques will be utilized in order to develop the required interfaces in a user-intuitive and efficient way, while interoperable web-services will enhance the accessibility and acceptance of the system. The vision extends to the experimental and clinical validation of the project outcomes with existing and newly acquired data (by conducting small scale clinical trials), and includes showcases in balance disorders diagnosis, prediction, treatment and follow-up in normal and micro-gravity environments.The final outcome will be a powerful web-based platform provided to primary and secondary care physicians across specialties, levels of training and geographical boundaries, targeting wider clinical acceptance as well as the increased confidence in the developed DSS towards the early diagnostic evaluation, behaviour prediction and effective management planning of balance problems.


Grant
Agency: Cordis | Branch: FP7 | Program: CSA | Phase: ICT-2013.3.2 | Award Amount: 4.65M | Year: 2013

The aim of SSL-erate is to accelerate the uptake of high-quality SSL technology in Europe by means of open innovation with and by bringing validated information to all relevant stakeholders. A coordinated European effort is required to address the European societal challenges (in particular health & quality of life in an ageing society, energy consumption and resource efficiency), to resolve the specific challenges of the Lighting industry as noted in the results of the Green Paper Lighting the Future consultation (notably: poor SSL quality, lack of information and awareness among citizens) and to enable lighting solutions with a societal and environmental sustainability perspective, leading to a future in which Europe evolves to the global leadership in SSL systems and solutions. The lighting industry is highly fragmented. As a consequence of this the innovation speed and success rate have been too low and the benefits that we all expect from better lighting solutions, do not sufficiently materialize. To overcome this fragmentation, a collaborative way-of-working, using open-innovation and smart specialization principles, will be taken as the guiding approach. The active involvement of various stakeholders will be realized through workshops, but also through the creation of a web-based SSL-erate Innovation platform, which is planned to continue beyond the duration of this project. Relevant (lighting and non-lighting) companies, but also other stakeholders (like e.g. public authorities, property owners, research institutes, (lead) users/citizens, entrepreneurs, architects, installers) will become active contributors to this accelerated innovation process by applying validated insights on green business development and lighting effects on health & well-being in SSL business experiments.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: SSH.2012.2.2-1 | Award Amount: 8.20M | Year: 2013

The central hypothesis of this project is that socio-economic, socio-demographic, ethnic and cultural diversity can positively affect social cohesion, economic performance and social mobility of individuals and groups. A better social cohesion, higher economic performance and increased chances for social mobility will make European cities more liveable and more competitive. In this period of long-term economic downturn (or sometimes even crisis) and increasing competition from countries elsewhere in the world (e.g. China, India), it is important to find out how and under which circumstances Europeans urban diversity can be turned into social and economic advantages. Many current urban policies lack a positive view on urban diversity, because they generally focus on the negative aspects of diversity, such as intolerance, racism, discrimination and insecurity. New policies, instruments and governance arrangements are needed, and sometimes they already exist. We have to find out how they have become successful and how they can be implemented elsewhere. When we acknowledge the hyper-diversity of our urban societies, we also have to acknowledge that these societies cannot flourish from standard or general approaches aiming at, for example, economic growth or better housing or more liveable neighbourhoods. Increasingly, more diverse, more tailored arrangements are needed, arrangements that have an eye for hyper-diverse cities and communities. As a result of the project, new and innovative policy instruments and governance arrangements will be suggested that (a) recognise urban diversity as a positive aspect; (b) increase interaction and communication between the diversity of groups in urban society; and (c) increase participation to satisfy the needs of the communities. The project thus aims at finding out how urban diversity influences three core issues: social cohesion, economic performance and social mobility and how governance arrangements help to strengthen this.


Grant
Agency: Cordis | Branch: FP7 | Program: CSA-SA | Phase: ENERGY.2013.9.2.1 | Award Amount: 2.22M | Year: 2014

As todays energy policy decisions are not only very complex, but also fundamentally political decisions, the necessity to build them on sound, unbiased and up-to-date information/knowledge makes energy policy analysis and advice from a broad array of non-commercial actors key to effective policy formulation. Taking this into account, it is the aim of this project to establish a multidisciplinary and independent energy think tank consisting of experts from the energy sector, top researchers, engineers, leading trade, economic, environmental, and legal experts who are experienced in delivering high quality policy advice and impact assessments. The think tank will provide policy makers at the European level with objective and unbiased policy advice as well as insights on policy options, including an assessment of their potential impact. Moreover, the think tank will bring to the attention of political decision-makers new trends in technology as well as the objectives and activities of important stakeholders that shape energy policy-making in Europe. In order to assess policy options concerning the four dimensions of sustainability (environmental, economic, social, institutional), the project will use an integrated assessment framework, backed by high-quality data resources available to the project consortium. To complement this, the project will establish innovative methods of stakeholder engagement and trend identification through the establishment of an Energy Observatory. Moreover, with transparency being of significant value, INSIGHT_E will make its models, assumptions, and scenarios available through a Scenario Information System. Implementing a flexible and at the same time profound information tool will bring about significant improvements to the policy making process and hence secure a climate-friendly energy policy.


Grant
Agency: Cordis | Branch: FP7 | Program: MC-ITN | Phase: FP7-PEOPLE-2013-ITN | Award Amount: 4.09M | Year: 2014

Improving Childrens Auditory REhabilitation (iCARE) Communication through language is vital to develop and maintain everything around us. By 15 years of age, about 5 out of 1000 children suffer from a moderate, severe or profound hearing impairment that can potentially affect communication, learning, psychosocial development and academic achievement if not appropriately handled. The EU promotes the active inclusion and full participation of disabled people in society. However, full active inclusion in an oral society can only be achieved through cooperation and involvement across disciplines (language, psychology, audiology, engineering, special education,). It is therefore of fundamental importance to approach the inclusion of children with hearing impairment in an interdisciplinary manner, and to train future experts to adopt such principles in their research and practice. The objectives of improving Childrens Auditory REhabilitation (iCARE) are twofold: 1) to provide training create a new generation of researchers capable of exploiting the synergies between different disciplines to optimize spoken communication in children with hearing impairment, and 2) to combine research across disciplines to develop novel methods, training skills and procedures for improving auditory rehabilitation. iCARE is an international and interdisciplinary consortium from academia, industry and socio-economic agencies. The proposed training consortium is unique because the partners are specialized in a variety of disciplines, both technical and non-technical, all of utmost importance to the core issue: optimizing inclusion of children with hearing impairment in an oral society through evidence-based research. The consortium will provide comprehensive training of fellows to become communication experts, and enable the development of novel methods, tools and evaluation material that will suit the evolving needs of children with hearing impairment in a holistic manner.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Training Grant | Award Amount: 5.00M | Year: 2014

Quantum technologies promise a transformation of measurement, communication and computation by using ideas originating from quantum physics. The UK was the birthplace of many of the seminal ideas and techniques; the technologies are now ready to translate from the laboratory into industrial applications. Since international companies are already moving in this area, there is a critical need across the UK for highly-skilled researchers who will be the future leaders in quantum technology. Our proposal is driven by the need to train this new generation of leaders. They will need to be equipped to function in a complex research and engineering landscape where quantum physics meets cryptography, complexity and information theory, devices, materials, software and hardware engineering. We propose to train a cohort of leaders to meet these challenges within the highly interdisciplinary research environment provided by UCL, its commercial and governmental laboratory partners. In their first year the students will obtain a background in devices, information and computational sciences through three concentrated modules organized around current research issues. They will complete a team project and a longer individual research project, preparing them for their choice of main research doctoral topic at the end of the year. Cross-cohort training in communication skills, technology transfer, enterprise, teamwork and career planning will continue throughout the four years. Peer to peer learning will be continually facilitated not only by organized cross-cohort activities, but also by the day to day social interaction among the members of the cohort thanks to their co-location at UCL.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: EINFRA-2-2014 | Award Amount: 13.13M | Year: 2015

OpenAIRE2020 represents a pivotal phase in the long-term effort to implement and strengthen the impact of the Open Access (OA) policies of the European Commission (EC), building on the achievements of the OpenAIRE projects. OpenAIRE2020 will expand and leverage its focus from (1) the agents and resources of scholarly communication to workflows and processes, (2) from publications to data, software, and other research outputs, and the links between them, and (3) strengthen the relationship of European OA infrastructures with other regions of the world, in particular Latin America and the U.S. Through these efforts OpenAIRE2020 will truly support and accelerate Open Science and Scholarship, of which Open Access is of fundamental importance. OpenAIRE2020 continues and extends OpenAIREs scholarly communication infrastructure to manage and monitor the outcomes of EC-funded research. It combines its substantial networking capacities and technical capabilities to deliver a robust infrastructure offering support for the Open Access policies in Horizon 2020, via a range of pan-European outreach activities and a suite of services for key stakeholders. It provides researcher support and services for the Open Data Pilot and investigates its legal ramifications. The project offers to national funders the ability to implement OpenAIRE services to monitor research output, whilst new impact measures for research are investigated. OpenAIRE2020 engages with innovative publishing and data initiatives via studies and pilots. By liaising with global infrastructures, it ensures international interoperability of repositories and their valuable OA contents. To ensure sustainability and long-term health for the overall OpenAIRE infrastructure, the proposed OpenAIRE2020 project will establish itself as a legal entity, which will manage the production-level responsibilities securing 24/7 reliability and continuity to all relevant user groups, data providers and other stakeholders.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.1.2-1 | Award Amount: 7.83M | Year: 2014

Background: Hyperinsulinaemic hypoglycaemia (HH) is a potentially lethal disease caused by over functioning beta cells derived from the pancreatic islets of Langerhans. Lethal HH and brain damage is a problem especially in infants with congenital HH. Current therapeutic approaches are associated with severe side effects/morbidity (diabetes, exocrine pancreas insufficiency etc.) considered acceptable in relation to the lethal outcome of HH although massively reducing quality of life and also life expectancy. Aims and objectives: In order to significantly improve therapy of this awful disorder, we propose to develop a simultaneous imaging/therapy platform allowing diagnostic imaging as well as image guided surgical, photodynamic or radiopeptide therapy to selectively resect/destroy diseased beta cells. This platform will enable delivery of patient-individual tailored therapy, increasing cure rate while significantly reducing or even avoiding side effects. The platform will integrate information from pre-clinical imaging for optimal therapy planning with intra-operative imaging for image guided surgery. By implementation of extended field optical coherence tomography, information on a histopathological level will allow increased precision of therapy. Highly innovative photodynamic therapy will enable selective (endoscopic) destruction of diseased beta cells without resection of pancreatic tissue. Outcome: Our highly-innovative integrated imaging/therapy (theranostic) platform will allow diagnosis and monitoring of disease, support and guide therapeutic intervention, predict outcome of intervention and individual prognosis. This technology will massively improve therapy, especially in infants, by improving cure rates while significantly reducing morbidity for improved quality of life and increased life expectancy. We will contribute to the goals of the International Rare Diseases Research Consortium (IRDiRC): 200 new therapies.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 1.30M | Year: 2016

One of the major current scientific and technological challenges concerns the conversion of carbon dioxide to fuels and useful products in effective and economically viable manner. This proposal responds to the major challenge of developing low energy routes to convert carbon dioxide to fuels and useful chemicals. The project has the following four main strands: (i) The use of electricity generated by renewable technologies to reduce CO2 electrocatalytically, where we will develop new approaches involving the use of ionic liquid solvents to activate the CO2 (ii) The use of hydrogen in the catalytic reduction of CO2, where we will apply computational procedures to predict new materials for this key catalytic process and subsequently test them experimentally (iii) The development of new materials for use in the efficient solar generation of hydrogen which will provide the reductant for the catalytic CO2 reduction (iv) A detailed life cycle analysis which will assess the extent to which the new technology achieves the overall objective of developing low carbon fuels. Our approach aims, therefore, to exploit renewably generated energy directly via the electrocatalytic route or indirectly via the solar generated hydrogen in CO2 utilisation for the formation of fuels and/or chemicals. The different components of the approach will be fully integrated to achieve coherent, new low energy technologies for this key process, while the rigorous life-cycle analysis will ensure that it satisfies the need for a low energy technology.


Age-related macular degeneration (AMD) is the worlds most important age-related blinding disorder. The current proposal utilises epidemiological data describing clinical phenotype, molecular genetics, lifestyle, nutrition, and in-depth retinal imaging derived from existing longitudinal European epidemiological cohorts and biobanks to provide three major insights needed for long-lasting prevention and therapy for AMD: (a) the development of robust algorithms utilising genetic and non-genetic risk factors to identify personalised risks of developing advanced wet and dry AMD; (b) the identification of novel biomarkers for further stratification of disease risks. New insights from (a)\(b) will be used to elaborate preventive medical recommendations for highrisk subgroups of AMD patients; and (c) the identification of molecular drivers/biological pathways relevant for onset and progression of advanced AMD that will be used to identify and validate new therapeutic targets. Key deliverables are: 1. Determination of AMD frequency in Europe, and assessment of AMD risk for phenotypical, genetic, environmental, and biochemical risk factors and their interaction. (WP1-3) 2. Development of a web-based prediction model for personalised risk assessment of AMD based on integration of risk profiles derived from retinal imaging, molecular genetics, assessment of lifestyle, and biochemical testing. (WP4) 3. Modelling and functional characterisation of pathophysiological pathways identified from integrated analysis of current knowledge and the above risk profiles. (WP5) 4. Experimental testing and interpretation of pathophysiological consequences of risks at the molecular level. (WP6) 5. An extension and refinement of the prediction model (WP4) based on work in WP5 and WP6 to generate clinical guidelines for the medical management of high-risk subgroups of patients with AMD. (WP7) 6. Promotion and dissemination of newly gained knowledge towards AMD prevention and therapy development


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: MG-9.3-2014 | Award Amount: 1.67M | Year: 2014

BENEFIT takes an innovative approach by analysing funding schemes within an inter-related system. Funding schemes are successful (or not) depending on the Business Model that generates them. The performance of the Business Model is affected by the implementation context and the transport mode. It is matched successfully (or not) by a financing scheme. Relations between actors are described by a governance model (contracting arrangements). These are key elements in Transport Infrastructure Provision, Operation and Maintenance. Success is a measure of the appropriate matching of elements. Within BENEFIT funding and financing schemes are analysed in this respect. Describing these key elements through their characteristics and attributes and clustering each of them is the basis of, first, developing a generic framework. This allows for the transferability of findings with respect to lessons learned, limitations and the impact of the financial and economic crisis. Identifying best matches in their inter-relations and where to intervene, leads to move from a generic framework to a powerful decision policy tool, which can assess funding schemes for investments in modern infrastructure with smart pricing and funding in view of 2050 challenges and needs. The BENEFIT partnership takes stock of over twenty years of EC funded, national and international research. It receives direct input (evidence study cases) from the OMEGA Centre and COST Action TU1001. It is set-up to share and exchange knowledge and debate. Its high level international advisory group and its consultation group demonstrate its ability to reach out to all stakeholders to share its innovative approach. Namely: 1)Transport infrastructure business models and their project rating by which further value propositions may be included to lead to funding schemes with enhanced creditworthiness enabling viable financing 2)Transferability 3)Open-access case study database serving both practitioners and researchers


Grant
Agency: Cordis | Branch: FP7 | Program: MC-ITN | Phase: FP7-PEOPLE-2013-ITN | Award Amount: 3.98M | Year: 2013

The objective is to deliver a trans-European network of industrially oriented specialists fully trained in the development and application of microbioreactor (MBR) technology to support development of innovative bio-based manufacturing processes. The specialistis will be trained by leaders in the field and with state of the art equipment and methodologies. MBRs are a promising tool for screening and scale-up of fermentation and biocatalysis processes due to their low production cost, small working volumes, flexibility and their potential for information-rich experiments under well-controlled experimental conditions. In this consortium, we will further develop MBRs for chemical and biochemical screening, paying special attention to MBR parallelization and applicability for different applications. In addition, characterization of experimental uncertainty, development of reactant feeding strategies at micro-scale and coupling of microscale experimentation to automated design of experiments (DoE) will document applicability of MBRs for chemical and biochemical research. To enhance the applicability of microfluidic enzymatic reactors for organic synthesis, we will establish microfluidic chemo-biocatalytic reaction systems that enable rapid characterization of biosynthetic pathways and chemo-enzymatic conversions. This will be underpinned with immobilization methods that permit rapid and reversible binding of a range of biocatalysts and modeling that relates the kinetic data with results from larger scales. Complemented with precisely positioned fluorescence-based sensor arrays, novel nanosensor particle concepts, and integrated Raman and NIR probes, the MBRs will deliver the data-rich experimentation needed for industrial applications. Data processing and information management will be accomplished by developing CFD and mathematical modeling methods that permit prediction and interpretation of fermentation and biocatalytic processes in MBRs.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2011.5.2 | Award Amount: 18.10M | Year: 2013

The DementiA Research Enabled by IT project responds to the European Parliaments 2011 resolution for a European Initiative on Alzheimers disease and other dementias, and the EU Year of the Brain 2014 Initiative. It delivers the first patient-specific predictive models for early differential diagnosis of dementias and their evolution. Its mechanistic/phenomenological models of the ageing brain account simultaneously for the patient-specific multiscale biochemical, metabolic and biomechanical brain substrate, as well as for genetic, clinical, demographic and lifestyle determinants. It investigates the effect of metabolic syndrome, diabetes, diets, exercise, and pulmonary conditions on the ageing brain, as environmental factors influencing onset and evolution of dementias.\n\nAn integrated clinical decision support platform will be validated/ tested by access to a dozen databases of international cross-sectional and longitudinal studies, including exclusive access to a population study that has tracked brain ageing in more than 10,000 individuals for over 20 years (Rotterdam Study).\n\nEnabling more objective, earlier, predictive and individualised diagnosis and prognosis of dementias will support health systems worldwide to cope with the burden of 36M patients that, due to ageing societies, will increase to 115M by 2050. Worldwide costs are estimated to 450B annually. In 2012, the WHO declared dementia a global health priority.\n\nOur consortium assembles highly recognised engineering, physical, biomedical and clinical scientists, and industrial partners experienced in exploiting VPH technologies in healthcare. Co-operation with infrastructure projects like VPH-Share, related international Physiome efforts, and other dementia research consortia is assured, allowing European researchers from different disciplines to contribute to share resources, methods and generate new knowledge.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 5.75M | Year: 2013

We propose an End Use Energy Demand (EUED) Centre focused on Energy Epidemiology to be located at the multidisciplinary UCL Energy Institute (UCL-Energy), which undertakes research on energy demand and energy systems. Energy Epidemiology uses data and modelling to study energy use in the real world, with the aim of understanding the interactions of policy, technology, infrastructure, people and culture. The Centre for Energy Epidemiology (CEE) will: undertake primary data collection; advise on data collection; provide secure and ethical curation of a wealth of administrative, commercial and research data; link, develop and use innovative research methods; and support a structured research programme on energy demand intended to achieve a major reduction in UK carbon emissions. CEE will provide key research and policy insights at city, regional, national and international levels. It will support UK academics, policymakers and industry to research energy demand, by providing a cost-effective, secure and ethical bureau service for energy and related data. It will work closely with the new cross-government Energy Efficiency Deployment Office (EEDO) of DECC, the Energy Saving Trust, UK Energy Research Centre (UKERC) and the new Open Data Institute (ODI) to marshal and maximise the value of existing and very large future sources of energy-related data (big data), ensuring the greatest impact for evidence-based energy demand research. The Centre will initiate and be a key player in an international network of energy epidemiologists, sharing research methods and undertaking cross-cultural comparisons of policies and technologies to reduce energy demand and to help the UK to meet its carbon targets. UCL-Energy: - has a clear focus on energy demand and its interaction with energy supply systems - this has been the core focus of UCL-Energy since its launch, with full UCL support, 35 months ago. - is multi- and interdisciplinary with lawyers, economists, social scientists, engineers, physicists, psychologists, architects, mathematicians and policy analysts co-located in open plan offices facilitating collaborative work. It has successfully worked with researchers from anthropology, English literature and history on energy demand problems. - makes an impact by supporting policy makers and industry to both set and achieve UK carbon targets. Examples of such support include the Green Deal, CCC budgets, smart meter rollout, and the development of products for reducing energy demand. UCL-Energy is the only university centre that has officially advised DECCs new EEDO, whose focus is squarely on EUED. - undertakes research of the highest quality; its staff were recognised as world leading by two successive EPSRC Platform Grant reviews. Roughly half its staff were submitted in the Built Environment UoA (30), for which UCL received the highest percentage (35%) of internationally leading staff (4*) in the UK. It holds the grant for the only Centre for Doctoral Training in energy demand. - is not sector-specific; it covers all energy uses and applies methods across sectors e.g. transport and buildings. - is managed as a coherent centre - this is facilitated by placing all staff under a single budget centre with a clear management structure. UCL-Energy is advised and guided by a prestigious International Advisory Board with CEOs and directors from leading companies around the world. - has leveraged a wide range of funding. From an initial UCL investment of £680k, it has so far raised £10m of external funding, including £2m from industry. - has strong leadership - its Director, Professor Tadj Oreszczyn has established a new academic department at UCL in less than 3 years, advises government at senior level, is on the boards of key organisations and has written several strategic papers on the future direction of energy demand research. - has critical mass and sustainability: UCL-Energy has 80 staff and PhD students


Grant
Agency: Cordis | Branch: FP7 | Program: CP-CSA-Infra | Phase: INFRA-2012-1.1.24. | Award Amount: 23.40M | Year: 2013

Research accelerators are facing important challenges that must be addressed in the years to come: existing infrastructures are stretched to all performance frontiers, new world-class facilities on the ESFRI roadmap are starting or nearing completion, and strategic decisions are needed for future accelerators and major upgrades in Europe. While current projects concentrate on their specific objectives, EuCARD-2 brings a global view to accelerator research, coordinating a consortium of 40 accelerator laboratories, technology institutes, universities and industry to jointly address common challenges. By promoting complementary expertise, cross-disciplinary fertilisation and a wider sharing of knowledge and technologies throughout academia and with industry, EuCARD-2 significantly enhances multidisciplinary R&D for European accelerators. This new project will actively contribute to the development of a European Research Area in accelerator science by effectively implementing a distributed accelerator laboratory in Europe. Transnational access will be granted to state-of-the-art test facilities, and joint R&D effort will build upon and exceed that of the ongoing EuCARD project. Researchers will concentrate on a few well-focused themes with very ambitious deliverables: 20 T accelerator magnets, innovative materials for collimation of extreme beams, new high-gradient high-efficiency accelerating systems, and emerging acceleration technologies based on lasers and plasmas. EuCARD-2 will include six networks on strategic topics to reinforce synergies between communities active at all frontiers, extending the scope towards innovation and societal applications. The networks concentrate on extreme beam performance, novel accelerator concepts with outstanding potential, energy efficiency and accelerator applications in the fields of medicine, industry, environment and energy. One network will oversee the whole project to proactively catalyze links to industry and the innovation potential.


Grant
Agency: Cordis | Branch: FP7 | Program: ERC-AG | Phase: ERC-AG-SH1 | Award Amount: 2.25M | Year: 2014

The aim of this research programme is to significantly enhance our knowledge of consumer and labour supply behaviour using frontier microeconometric analysis. The objective is to improve our understanding of how individuals make choices, how they react to changes in the economic environment and how they respond to policy reforms. There are two key aspects to the proposed research. The first is to extend the analysis of consumer behaviour and revealed preference to allow for preference heterogeneity, many goods and taste change. A central part of this work will concern the imposition of shape restrictions that derive from revealed preference and integrability restrictions in the nonparametric analysis of consumer behaviour. This work will focus on the microeconometric analysis of consumer surveys and the nonparametric estimation of consumer demand at the household level. The second is a parallel set of studies that will examine the life-cycle behaviour of consumption and labour supply choices in a dynamic environment with uncertainty. This work will use panel data to investigate non-separabilities between consumption and labour supply. It will explore the role of family labour supply as a mechanism to insure families against adverse economic shocks. It will involve bringing models of family earnings dynamics together with consumption decisions. The focus will be on the importance of non-separabilities, dynamics and heterogeneity in understanding the behavioural responses of consumption and family labour supply behaviour to policy reforms and other changes in the economic environment. Through a sequence of interrelated studies in these two broad areas, the research programme aims to radically move forward methodological approaches in empirical economics to modelling key aspects of household consumption and labour supply behaviour.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: SC5-14-2014 | Award Amount: 2.99M | Year: 2015

In the last two decades the world has experienced several crises. In light of these trends and to more effectively move towards sustainable development, several organisations and international actors have developed the concept of green economy as action-oriented approaches. Priority interventions are aimed at triggering technology adoption, and stimulate behavioural change. In fact, eco-innovation can be considered an enabler for a green economy to the same extent that the green economy can be understood as an enabler of sustainable development. Green.eu is designed to address these challenges, ranging the conceptualization of eco-innovation and the green economy, to the harmonization of the approaches needed to coherently assess performance, identify gaps (successes and failures) for the effective adoption of technologies that can create win-win results. In particular, the project is designed so as to improve (1) harmonization of definitions, (2) collection of relevant information on the performance of past and current efforts, and (3) coordination among stakeholders. Green.eu sees the main challenges in an improved understanding (and scientific assessment) of the concepts of green economy and eco-innovation, on the adaptation of policy agendas, the documentation of best practices and guidelines for knowledge transfer and transferability. The inter- and transdisciplinary green.eu network (including knowledge brokers, programme owners and global industry networks) is research based and aims to accelerate the transition towards a green economy significantly, with a European focus on co-development of knowledge. It aims to exploit win-win-opportunities and to improve the take up of R&D results. It includes the following work packages: Networking and co-ordination; Harmonization of concepts of green economy and eco-innovation; Eco-innovation policy agendas; Best practices, knowledge transfer, transferability; Integration and operationalization of lessons learned.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: COMPET-10-2014 | Award Amount: 2.00M | Year: 2015

EUSPACE-AWE uses the excitement of space to attract young people to science and technology and stimulate European and global citizenship. Our main goal is to increase the number of young people that choose space-related careers. We shall target diverse groups that influence career decisions, showing teenagers the opportunities offered by space science and engineering and inspiring primary-school children when their curiosity is high, their value systems are being formed and seeds of future aspirations are sown. Activities will 1. Acquaint young people with topical cutting-edge research and role-model engineers, 2. Demonstrate to teachers the power of space as a motivational tool and the opportunities of space careers, 3. Provide a repository of innovative peer-reviewed educational resources, including toolkits highlighting seductive aspects of Galileo and Copernicus and 4. Set up a space career hub and contest designed to appeal to teenagers. Attention will be paid to stimulating interest amongst girls and ethnic minorities and reaching children in underprivileged communities, where most talent is wasted. Targeting policy makers via high-impact events will help ensure sustainability and demonstrate the social value of the space programme. We maximise cost effectiveness by 1 Piggy backing on existing ESERO and other teacher training courses and 2. Exploiting and expanding infrastructures of proven FP7-Space projects, EU Universe Awareness for young children and Odysseus for teenagers. EUSPACE-AWE will complement existing space-education programs and coordinate closely with ESA. We shall reach European teachers, schools and national curricula through host organisations of ESEROs and the extensive networks of European Schoolnet, Scientix and UNAWE. Designated nodes will provide curriculum and resource localisation and test beds for professional evaluation. A partnership with the IAU Office of Astronomy for Development in Cape Town ensures global reach.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2014-ETN | Award Amount: 3.56M | Year: 2015

The aim is to create an innovative European PhD training network in bone pain. Millions in Europe and beyond suffer from bone pain, a debilitating complication of many musculoskeletal disorders such as arthritis and bone metastasis. However, being a truly multidisciplinary subject spanning neuroscience, bone biology, and even cancer research, it demands a multidisciplinary approach. Despite a huge negative impact on the quality of life of the patients and on society as a whole, no specific treatment is available. To address this societal challenge and the strong innovation potential, we want to form the first European platform to promote frontline research, innovation and education within bone pain. The network encompasses 5 academic and 2 industrial beneficiaries and 1 industrial partner all committed to creating an outstanding wide-ranging yet integrated training program for early stages researchers to elucidate the mechanisms of bone pain and develop new medicines. We will use in vivo models of arthritic pain, cancer-induced bone pain and fracture pain to investigate the pathophysiology and novel treatment strategies. In vivo electrophysiology will be used for studying the physiology and pharmacology of pain transmission and its modulation. Transgenic mouse models will be used to tease out the specific neuronal receptor subtypes involved. Sophisticated behaviour tests will evaluate response to novel treatments. We will create a biobank of human cancer-infiltrated bone to identify specific patterns of neuronal receptor expression and to validate therapeutic targets in humans. In an extensive training effort covering both specific research skills and transferable skills, the students will obtain an interdisciplinary, state-of-the-art and innovative training from the participants, several of which have experience from international networks. The students will benefit from secondments with industrial partners and with some of the foremost pain researchers in Europe


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: FETPROACT-1-2014 | Award Amount: 4.21M | Year: 2015

We propose visionary research to develop modeling, computational, and ICT tools needed to predict and influence disease spread and other contagion phenomena in complex social systems. To achieve non-incremental advances we will combine large scale, realistic, data-driven models with participatory data-collection and advanced methods for Big Data analysis. In particular we will go beyond the one-dimensional focus of current approaches tackling one aspect of the problem at a time. We will interconnect contagion progression (e.g. epidemics) with social adaptation, the economic impact and other systemic aspects that will finally allow a complete analysis of the inherent systemic risk. We will develop models dealing with multiple time and length scales simultaneously, leading to the definition of new, layered computational approaches. Towards policy impact and social response we will work to close the loop between models, data, behavior and perception and develop new concepts for the explanation, visualization and interaction with data and models both on individual and on collective level. We will cast the fundamental advances into an integrated system building on widely accepted open ICT technologies that will be used and useful beyond the project. As a tangible ICT outcome directed at facilitating the uptake and impact of the project, we will implement Interactive Social Exploratories defined as interactive environments which act as a front-end to a set of parameterizable and adjustable models, data analysis techniques, visualization methods and data collection frameworks. In summary, we aim to (1) produce fundamental theoretical, methodological and technological advances (2) mold them into a broadly usable ICT platform that will be a catalyst for producing, delivering, and embedding scientific evidence into the policy and societal processes and (3) evaluate the system empirically with policy makers and citizens focusing on the concrete problem of epidemic spreading.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2014-ETN | Award Amount: 3.87M | Year: 2015

This European Training Network aims to produce the next generation of early stage researchers who will enable Europe to take a leading role in the development of future devices, systems and networks supporting the 5G high-speed wireless internet. To do this, researchers must be able to work in interdisciplinary teams, integrate their activities, share expertise, and promote a vision of a converged wireless and optical devices and networks that efficiently supports the services and applications being demanded. A large number of technologies and devices will need to converge, co-exist and interoperate, and most importantly, cooperate, if this vision is to be efficiently and cost-effectively realised. A key area within this next generation jigsaw is the integration of optical fibre networks and radio networks at mm-wave frequencies, to provide high-bandwidth front/backhaul services and enable scalable and manageable networks without a highly complex interface structure and multiple overlaid protocols. FIWIN5G aims to provide doctoral students with the exposure to the range of skills, necessary to address these challenging demands. Deep technical knowledge but also key transferable skills common in entrepreneurship, management, financing as well as communication, and societal outreach. While becoming expects in one particular sub-domain, they must understand the broad context of their work, whether it is systems/network engineers understanding the devices and technologies that make up the networks or device engineers understanding the networks in which their devices will function. We draw together a range of world-leading partners, selected for their complimentary and excellence to offer a vital opportunity to advance industrys understanding and uptake of the key technologies in this area. To provide excellent training and diverse experience of research environments, all project involve a significant period of secondment and collaboration with an industry partner.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2013.6.2 | Award Amount: 4.26M | Year: 2013

DOLFIN addresses the demand/response and energy stabilisation scenario of the Smart Grid by optimising the energy consumption of Data Centres (DC), accompanied, if necessary, with a respective negotiation and readjustment of the DCs Service Level Agreements (SLAs). To achieve this, DOLFIN adopts an innovative energy closed control loop that targets to deliver the following advancements:\n Create an integrated poll of 4 parametric energy consumption optimisation mechanisms (eCOM).\n Organise the orchestration of eCOMs at the DC level, through dynamically deployed energy optimisation policies.\n Fine-tune the parametrical implementation of eCOM and contribute to their standardisation.\n Create a platform for handling virtualised ICT resources in an energy aware manner, considering SLA restrictions.\n Introduce the idea of synergetic DCs and implement a migration process for ICT-processing workload, complying with SLA restrictions.\n Make the DOLFIN DC part of the Smart Grid energy stabilisation solution for the demand/response scenario.\n Build a system that is able to take informed decisions, so as to adapt the DCs electricity consumption to the demands of the Smart Grid.\n Combine traditional metrics for ICT SLA management with energy performance metrics for ICT.\n Implement a DC SLA renegotiation process considering both ICT and energy metrics.\n Constitute the ICT SLA metrics proportional to the energy SLA metrics in a DC.


Grant
Agency: Cordis | Branch: FP7 | Program: CSA-SA | Phase: SiS.2013.1.1.1-1 | Award Amount: 7.76M | Year: 2014

This project will develop and use a Training and Dissemination Toolkit on Responsible Research and Innovation (RRI). It will be addressed and designed by all the stakeholders of the Research and Innovation (RI) chain of value, including Researchers, Civil Society, Industry and Education but will specially focus on Policy Makers in order to impact significantly in the future governance of RI. The Consortium that will carry out the project is a 26 multi-stakeholder group of institutions with experience in different key components of RRI. The project envisages the creation of 19 RRI Hubs covering 30 countries of the European Research Area. The Consortium and the RRI Hubs will carry out a process of development of the toolkit that will be collaborative and inclusive, this way fostering methods and channels of dialogue in order to increase creativity and shared ownership of the process. Ultimately, the process will lead to a Community of Practice in RRI which will assure the use, evolution and enrichment of the toolkit. The RRI Toolkit will be an innovative and creative set of tools comprising practical digital resources and actions aimed at raising awareness, training, disseminating and implementing RRI. The RRI Hubs will be responsible for training on the use of the toolkit throughout Europe, of advocating policy makers at a national and regional level and of disseminating the concept of RRI to a wide audience. Bridging the gap between Science and Society has been a challenge for decades. Today, there is evidence that we need to involve wider society in decisions about the form and direction of research and innovation to contribute to a smart, inclusive and sustainable growth of our societies. RRI TOOLS will help transform Research and Innovation in Europe into a process targeted at the grand challenges of our time (science for society) where deliberation and reflection are coupled with action (science with society).


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 4.56M | Year: 2016

Today we use many objects not normally associated with computers or the internet. These include gas meters and lights in our homes, healthcare devices, water distribution systems and cars. Increasingly, such objects are digitally connected and some are transitioning from cellular network connections (M2M) to using the internet: e.g. smart meters and cars - ultimately self-driving cars may revolutionise transport. This trend is driven by numerous forces. The connection of objects and use of their data can cut costs (e.g. allowing remote control of processes) creates new business opportunities (e.g. tailored consumer offerings), and can lead to new services (e.g. keeping older people safe in their homes). This vision of interconnected physical objects is commonly referred to as the Internet of Things. The examples above not only illustrate the vast potential of such technology for economic and societal benefit, they also hint that such a vision comes with serious challenges and threats. For example, information from a smart meter can be used to infer when people are at home, and an autonomous car must make quick decisions of moral dimensions when faced with a child running across on a busy road. This means the Internet of Things needs to evolve in a trustworthy manner that individuals can understand and be comfortable with. It also suggests that the Internet of Things needs to be resilient against active attacks from organised crime, terror organisations or state-sponsored aggressors. Therefore, this project creates a Hub for research, development, and translation for the Internet of Things, focussing on privacy, ethics, trust, reliability, acceptability, and security/safety: PETRAS, (also suggesting rock-solid foundations) for the Internet of Things. The Hub will be designed and run as a social and technological platform. It will bring together UK academic institutions that are recognised international research leaders in this area, with users and partners from various industrial sectors, government agencies, and NGOs such as charities, to get a thorough understanding of these issues in terms of the potentially conflicting interests of private individuals, companies, and political institutions; and to become a world-leading centre for research, development, and innovation in this problem space. Central to the Hub approach is the flexibility during the research programme to create projects that explore issues through impactful co-design with technical and social science experts and stakeholders, and to engage more widely with centres of excellence in the UK and overseas. Research themes will cut across all projects: Privacy and Trust; Safety and Security; Adoption and Acceptability; Standards, Governance, and Policy; and Harnessing Economic Value. Properly understanding the interaction of these themes is vital, and a great social, moral, and economic responsibility of the Hub in influencing tomorrows Internet of Things. For example, a secure system that does not adequately respect privacy, or where there is the mere hint of such inadequacy, is unlikely to prove acceptable. Demonstrators, like wearable sensors in health care, will be used to explore and evaluate these research themes and their tension. New solutions are expected to come out of the majority of projects and demonstrators, many solutions will be generalisable to problems in other sectors, and all projects will produce valuable insights. A robust governance and management structure will ensure good management of the research portfolio, excellent user engagement and focussed coordination of impact from deliverables. The Hub will further draw on the expertise, networks, and on-going projects of its members to create a cross-disciplinary language for sharing problems and solutions across research domains, industrial sectors, and government departments. This common language will enhance the outreach, development, and training activities of the Hub.


Grant
Agency: GTR | Branch: NERC | Program: | Phase: Research Grant | Award Amount: 148.26K | Year: 2016

As a first stage in the analysis of storm surge risks to UK port infrastructure and supply chain operation, this project aims to improve the resilience of the port of Immingham and its critical biomass/coal transport link to power stations. The project includes the following three activities: WF1: To refine and operationalize an innovative artificial neural network (ANN) extreme sea-level prediction model (NE/M008150/1) for application at Immingham (with potential application for other UK ports, especially within estuaries). WF2: To translate predicted surge height and duration to risks to infrastructure (equipment, facilities) and operations (i.e. impacts on biomass/coal flows) through stakeholder engagement. WF3: Incorporate railway infrastructure and freight train movements to UCLs MARS model (used in NE/M008150/1) to predict the cascading impacts on the power sector.


Grant
Agency: Cordis | Branch: H2020 | Program: SGA-CSA | Phase: WIDESPREAD-1-2014 | Award Amount: 499.85K | Year: 2015

This proposal aims to develop the necessary endeavours to elaborate a robust and feasible Business Plan that will be the basis for the creation of a new Centre of Excellence in Portugal The Discoveries Centre for Regenerative and Precision Medicine. It is an initiative of the Portuguese Foundation for Science & Technology, scientifically coordinated by the University of Minho and involving a national partnership formed by the 6 top-ranked Portuguese universities. The new Centre will result from a teaming process with the University College London, an institution of research and innovation excellence from the UK. The experience and expertise of all these entities future founding members of the new Centre will be used to design the necessary strategies and approaches to build the final business plan. The Discoveries Centre to be created will perform world-leading research, by anchoring research activities of the best research groups in Portugal, promoting excellence, advanced training, translational research outputs and commercialisation strategies. In the long-run, these are expected to generate an important economic impact, as well as a positive social effect by contributing to the increase of the quality of life of an ageing European population affected by neurodegenerative, cardiovascular and musculoskeletal diseases. Therefore, it is anticipated that The Discoveries Centre will be able to foster a knowledge-based economy aligned with national and regional strategic priority areas and European societal challenges, thus reinforcing Portugals scientific capabilities and social and economic development. It will also contribute to a global recognition of the national scientific production, having a structuring effect in the Portuguese science, generating high value-added products, attracting top-level international scientists, as well as enhancing the capacity to retain the best Portuguese researchers.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: NMP.2013.1.4-2 | Award Amount: 11.56M | Year: 2013

The NanoMag project is to improve and redefine existing analyzing methods and in some cases, to develop new analyzing methods for magnetic nanostructures. Using improved manufacturing technologies we will synthesize magnetic nanoparticles with specific properties that will be analyzed with a multitude of characterization techniques (focusing on both structural as well as magnetic properties) and bring the experimental results together to obtain a self-consistent picture which describes how structural and magnetic properties are interrelated. This extensive survey will be used to define standard measurements and techniques which are necessary for defining a magnetic nanostructure and quality control. NanoMag brings together Europes and internationally leading experts in; manufacturing of magnetic single-core nanoparticles and magnetic multi-core particles, analyzing and characterization of magnetic nanostructures and national metrology institutes. In the consortium we have gathered partners within research institutes, universities and metrology institutes, all carrying out front end research and developing applications in the field of magnetic nanoparticles.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-09-2015 | Award Amount: 28.14M | Year: 2016

Many HIV vaccine concepts and several efficacy trials have been conducted in the prophylactic and therapeutic fields with limited success. There is an urgent need to develop better vaccines and tools predictive of immunogenicity and of correlates of protection at early stage of vaccine development to mitigate the risks of failure. To address these complex and challenging scientific issues, the European HIV Vaccine Alliance (EHVA) program will develop a Multidisciplinary Vaccine Platform (MVP) in the fields of prophylactic and therapeutic HIV vaccines. The Specific Objectives of the MVP are to build up: 1.Discovery Platform with the goal of generating novel vaccine candidates inducing potent neutralizing and non-neutralizing antibody responses and T-cell responses, 2. Immune Profiling Platform with the goal of ranking novel and existing (benchmark) vaccine candidates on the basis of the immune profile, 3. Data Management/Integration/Down-Selection Platform, with the goal of providing statistical tools for the analysis and interpretation of complex data and algorithms for the efficient selection of vaccines, and 4. Clinical Trials Platform with the goal of accelerating the clinical development of novel vaccines and the early prediction of vaccine failure. EHVA project has developed a global and innovative strategy which includes: a) the multidisciplinary expertise involving immunologists, virologists, structural biology experts, statisticians and computational scientists and clinicians; b) the most innovative technologies to profile immune response and virus reservoir; c) the access to large cohort studies bringing together top European clinical scientists/centres in the fields of prophylactic and therapeutic vaccines, d) the access to a panel of experimental HIV vaccines under clinical development that will be used as benchmark, and e) the liaison to a number of African leading scientists/programs which will foster the testing of future EHVA vaccines through EDCTP


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.2.4.1-1 | Award Amount: 7.56M | Year: 2013

Ewing Sarcomas (ES) are fatal, rare bone cancers particularly affecting young people. About 60% of patients achieve long term survival with current treatment but there has been no improvement in this proportion for 25 years. Treatment is unsuccessful because chemotherapy fails to prevent the development of, or to effectively treat established, metastases. In addition, of the 600 new cases of ES occurring in the EU each year, less than half will receive treatment appropriate to deliver the most favourable outcome. The EUROEWING Consortium (EEC) is a coalition of clinical study groups bringing together the most active clinicians and scientists in Europe dedicated to improving survival from ES. This initiative can achieve this through an integrated programme of investigator-driven, inclusive clinical trials that are rigorously designed, conducted, analysed and reported, and underpinned by complementary embedded translational research. These include i) a first line randomised study in patients of all ages with ES which defines standards of care to prevent development of metastases and serves as a backbone for implementation of new agents, and ii) a randomised study of current second line chemotherapy in patients of all ages with ES which will serve as a platform for testing of new agents. Companion studies in association with these trials will be performed investigating tumour biology, underlying causes of differential response and toxicity, and other biomarkers. The programme will be supported by new initiatives for the involvement of patients in research planning and operation. Through collaborative working, the EEC will provide ES patients with greater access to clinical trials, allow efficient acquisition of knowledge and deliver clinically meaningful results within the lifetime of the grant, thereby contributing to improved survival from ES.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: MG-8.6-2016 | Award Amount: 599.94K | Year: 2016

The concept of this project is to organise two competitions for transport research awards to be announced at the TRA conference in 2018 - A Young researchers competition with the goal of stimulating the interest among young researchers/students in the field of sustainable surface transport. - A competition for senior researchers in the field of innovative surface transport concepts based on results only from EU-funded projects.


Grant
Agency: Cordis | Branch: FP7 | Program: MC-ITN | Phase: FP7-PEOPLE-2012-ITN | Award Amount: 3.95M | Year: 2013

We propose a multi-site ITN consisting of 8 Full and 3 Associated Partners that will deliver a total of 500 ESR-months of training in the physics and techniques of Monte Carlo event generators to a total of at least 15 long-term and 40 short-term appointed researchers. Monte Carlo event generators are central to high energy particle physics. They are used by almost all experimental collaborations to plan their experiments and analyze their data, and by theorists to simulate the complex final states of the fundamental interactions that may signal new physics. We intend to build on the success of our RTN MCnet, by creating an ITN incorporating all the authors of current general purpose event generators, with the main purposes of: (a) training a large section of our user base, using annual schools on the physics and techniques of event generators and short-term residencies of Early Stage Researchers as a conduit for transfer of knowledge to the wider community; (b) training the next generation of event generator authors through a significant number of dedicated studentships in our research groups; (c) providing broader training in transferable skills through our research, through dedicated training in entrepreneurship and employability and through secondments to private sector partners. We will achieve these training objectives both through dedicated activities and through our outreach and research activities: (d) enhancing the visibility of particle physics in the wider community by specific outreach projects using event generators to visualize current particle physics research; (e) developing and supporting the new generation of event generators intended for use throughout the LHC data analysis era and beyond; (f) playing a central role in the analysis of LHC data and the discovery of new particles and interactions there; and (g) extracting the maximum potential from existing data to constrain the modeling of the data from the LHC and future experiments.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: ICT-22-2016 | Award Amount: 5.55M | Year: 2017

The overarching aim of the iRead project is to develop a software infrastructure of personalised, adaptive technologies and a diverse set of applications for supporting learning and teaching of reading skills. The specific goals of the project proposed are to: 1. Develop a scalable, cloud-based software infrastructure of open, interoperable components, including real-time user modelling and domain knowledge components, to support learning of reading skills by children with different abilities and linguistic backgrounds 2. Develop domain models for English, Greek, German and Spanish learners, and to contextualise those models with respect to skills and difficulties of (i) typically developing readers, (ii) English and Greek readers with dyslexia and (ii) learners of English as a Foreign language. The domain models will utilise and generalise the domain model implemented in a previous FP7 project iLearnRW 3. Develop applications for supporting learning (literacy games, interactive e-books, Reader app) that utilise the infrastructure to yield different types of personalised learning services and experiences 4. Develop and evaluate personalised content classification metrics that enable reading for use by electronic publishers and libraries 5. Enable orchestrated use of the learning applications (games, e-books, Reader app) based on learning analytics, and a personalised experience through adaptive support 6. Implement a number of large-scale evaluation pilots across European countries and providers in order to evaluate the pedagogical effectiveness of the iRead ecosystem.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: INT-10-2015 | Award Amount: 2.49M | Year: 2016

Southeast Europe has seen a century of continuous transformation and transition the disappearance and emergence of states, political and legal systems, ideologies, institutions, and social classes. This has been accompanied by a stability of social practices resistant to change. Shaken by radically changing ideological and legal structures, citizens rely on customary and informal social networks of kin, symbolic kin, and friends for meeting economic needs, and on clan- or kin-related structures rather than the rule of law for security and protection. We trace the persistence of informal practices to: 1) the external origin of major transformations, including the transitions to and from socialism; 2) the incomplete character of change, which has tended to be replaced by equally radical but diametrically opposed projects; 3) the development of a buffer culture based on informal practices, directed to enabling people to survive under unstable conditions; and 4) the widening gap between formal institutions and informal social practices. The distance between proclaimed goals and existing practices represents the key challenge to the European integration of Balkan societies. The integration process could end with superficial change, behind which the real social life of corruption, clientelism, tension, inequality, and exclusion will continue to unfold. We propose to explicate the key formal and informal rules of the game, and to identify and decipher the unwritten rules which underpin tactical maneuvering between formal and informal institutions, in various spheres and at various levels of social life. These would then be compared to the demands and recommendations laid out in the key EU documents outlining expectations from Southeast European states. The goal is to contribute to the formulation of policy recommendations which would aim not to eradicate informal practices, but to close the gap between formal and informal institutions in Balkan societies.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-14-2015 | Award Amount: 7.10M | Year: 2016

Short Bowel Syndrome (SBS) is a condition that occurs when part or the entire small intestine is missing or has been removed during surgery. This condition renders the bowel incapable of fulfilling its nutritional function (intestinal failure). There is no cure for SBS. Parenteral (intravenous) nutrition (PN) and bowel transplantation are currently the preferred options for nutrition in children and adults who have lost their bowel. PN offers a low survival rate, compromised quality of life, and the economic cost for each patient is estimated to be 55,000 euro/year. Small intestinal transplant is also an option with one-year and 4-year survival rates of 90% and 60% respectively. However, because of the shortage of organs, high mortality, the severe side effects of immunosuppression and low quality of life, this is still a sub-optimal solution. The objective of this programme is to deliver a functional bowel reconstruction to patients with SBS through an autologous tissue engineering strategy, overcoming the shortage of organs, and avoiding the need for immunosuppression. It will be achieved by identifying the best autologous cell source; providing the ideal scaffold; engineering functional intestine for transplantation and engaging with patients, scientists and public. The work is designed to lead directly to a clinical trial for the application of the optimal protocol for tissue-engineered intestine. The consortium is uniquely positioned to complete this ambitious effort as we have an internationally pre-eminent, multi-disciplinary team, which possesses a combination of expertise from basic molecular biology, engineering, and surgery, combining knowledge from universities, hospitals and industry. Importantly we are one of the few groups in the world with experience, infrastructure, and track record to translate regenerative medicine solutions to patients, including true clinical translation of tissue engineered organs.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SC5-06-2016-2017 | Award Amount: 6.35M | Year: 2016

The Paris Agreement substantially increased the need for countries and regions to understand the full economic, social and environmental implications of the deep decarbonisation to which the global community is now committed. The EU has long had decarbonisation ambitions, but there remains considerable uncertainty as to precisely how these ambitions will be achieved, or what the impacts of such achievement will be on the EU economy and society more generally. INNOPATHS will resolve this uncertainty to the extent possible, will characterise and provide a quantification of the uncertainty which remains, and will describe in great detail a number of possible low-carbon pathways for the EU, together with the economic, social and environmental impacts to which they are likely to lead. These pathways will be co-designed with the aid of 23 stakeholders from different sectors who have already provided letters of support to INNOPATHS. INNOPATHS will suggest through this analysis how the benefits of these pathways, such as new industries, jobs and competitiveness, may be maximized, and how any negative impacts, such as those on low-income households, or on carbon-intensive sectors, may be mitigated. INNOPATHS will communicate its insights through the normal scientific channels, and make substantial contributions to the scientific literature, but will go well beyond this in terms of interactions with stakeholders, building on the co-design processes in the project to reach out to stakeholder networks of businesses, NGOs, local and national policy makers. INNOPATHS will create four innovative online tools to explain its pathways, technological transitions and policies, to different constituencies. Through these tools and other dissemination and communication mechanisms, INNOPATHS will have a substantial impact on the climate and energy policy debates up to and beyond 2020, increasing the probability that decisions in this area will be taken in an informed and cost-effective way


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-04-2015 | Award Amount: 5.95M | Year: 2016

The overarching aim of INHERIT is to define effective inter-sectoral policies and interventions that promote health and well being across the social gradient by tackling key environmental stressors and related inequalities in the areas of living, consuming and moving. INHERIT will bring together relevant stakeholders from different sectors, including the private sector. It will support inter-sectoral cooperation between environment, climate and health by: a) Analysing existing scientific knowledge on key environmental stressors to health and approaches to address these; b) Identifying existing promising inter-sector policies and interventions that enable conditions for more healthy and environmentally sustainable behaviours, in three main areas: living, consuming and moving; c) Developing a Common Analytical Framework using impact assessment tools and quantitative and qualitative indicators to assess the social, environmental and health benefits and the economic value in promising inter-sectoral interventions; d) Developing targets and future visions while considering overall economic and politics contexts and global trends (i.e. participatory back-casting, stakeholder and citizen consultations and household surveys); e) Implementing, testing and evaluating pilot interventions in different European contexts; f) Enhancing the leadership skills of public health professionals in inter-sectoral work to address key environmental stressors to health and promote healthy and environmentally sustainable lifestyles; g) Translating evaluation findings into models of good practice for effective inter-sectoral work and evidence based tools for policy development to contribute to the global and European environment, health and sustainable development policy agenda. The novelty of INHERIT lies in its support for health, environment and climate sectors to jointly pursue the inter-related goals of improving health and well-being of the population while preserving the environment.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-14-2015 | Award Amount: 7.47M | Year: 2016

Severe combined immunodeficiency (SCID) is a devastating rare disorder of immune system development. Affected infants are born without functional immune systems and die within the first year of life unless effective treatment is given. Treatment options are limited to allogeneic haematopoietic stem cell transplantation and autologous stem cell gene therapy. Over the last 15 years, gene therapy for two forms of SCID (SCID-X1 and ADA SCID) has shown significant safety and efficacy in correcting the immunodeficiency and allowing children to live normal lives. Proof of concept of gene therapy for 3 other SCID forms has also been shown by members of the proposed SCIDNET consortium and is ready for translation into clinical trials. We are therefore in a position whereby, over the next 4 years, we can offer gene therapy as a curative option for over 80% of all forms of SCID in Europe. Importantly for 1 of these conditions (ADA SCID) we will undertake clinical trials that will lead to marketing authorisation of the gene therapy product as a licensed medicine. In addition, we will investigate the future technologies that will improve the safety and efficacy of gene therapy for SCID. Our proposal addresses an unmet clinical need in SCID, which is classified as a rare disease according to EU criteria (EC regulation No. 141/2000). The proposal also addresses the need to develop an innovative treatment such as gene therapy from early clinical trials though to a licensed medicinal product through involvement with regulatory agencies and is in keeping with the ambitions of the IRDiRC. The lead ADA SCID programme has Orphan Drug Designation and clinical trial design is assisted by engagement with the European medicines Agency. The ADA SCID trial will act as a paradigm for the development of the technologies and processes that will allow gene therapy for not only SCID, but also other bone marrow disorders, to become authorised genetic medicines in the future.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.1.3-2 | Award Amount: 7.95M | Year: 2013

TRANSLINK is a project devoted to assessing the mid-to long-term risk factors and improve the outcome of animal (bovine/porcine)-derived Bioprosthetic Heart Valve (BHV) implants. 300,000 patients/year benefit from BHV, a major healthcare problem (second most frequent cardiac surgery). BHV clinical outcome suffers from late dysfunctions restricting their application to older recipients. Based on a retrospective (already computerised) and prospective cohort of approximately 3,000 BHV recipients and control patients from 3 large EU cardiac surgery groups, TRANSLINK aims primarily to establish the possible role of recipients immune response (IR) against BHV as a major cause to mid- to-long term clinical dysfunction. Precise molecular analysis of preimplantation BVH sugar moieties will be performed. Possible indirect side-effects on BHV endocarditis and host vessels inflammation are secondary end points. Serial and trans-sectional blood samples will be dispatched to a battery of highly specialised partner groups for testing anti-Gal, -Neu5Gc and -hyaluronic acid antibodies (Ig) using both validated and newly designed screening tools, glycan array patterns, and macrophages/NK responses. Data will be crossed with clinical outcome scores. Project design aims at delivering comprehensive recommendations in the time-frame of the grant. Fundamental basic science progress in the field of carbohydrate antigens is also expected. Furthermore, prevention (BHV from engineered animal source lacking major antigens) and treatment (bioabsorbants of deleterious Ig) oriented remedies as well as prospective biomarkers of longterm BHV deterioration will be set up by three first-class SMEs. TRANSLINK may strongly impact the treatment of heart valve diseases by improving morbid-mortality in patients with heart valves diseases and increasing the indication of BHV to younger patients.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: LCE-11-2015 | Award Amount: 5.99M | Year: 2016

WASTE2FUELS aims to develop next generation biofuel technologies capable of converting agrofood waste (AFW) streams into high quality biobutanol. Butanol is one of the most promising biofuels due to its superior fuel properties compared to current main biofuels, bioethanol and biodiesel. In addition to its ability to reduce carbon emissions, its higher energy content (almost 30% more than ethanol), its ability to blend with both gasoline and diesel, its lower risk of separation and corrosion, its resistance to water absorption, allowing it to be transported in pipes and carriers used by gasoline, it offers a very exciting advantage for adoption as engines require almost no modifications to use it. The main WASTE2FUELS innovations include: Development of novel pretreatment methods for converting AFW to an appropriate feedstock for biobutanol production thus dramatically enlarging current available biomass for biofuels production Genetically modified microorganisms for enhancing conversion efficiencies of the biobutanol fermentation process Coupled recovery and biofilm reactor systems for enhancing conversion efficiencies of Acetone-Butanol-Ethanol fermentation Development of new routes for biobutanol production via ethanol catalytic conversion Biobutanol engine tests and ecotoxicological assessment of the produced biobutanol Valorisation of the process by-products Development of an integrated model to optimise the waste-to-biofuel conversion and facilitate the industrial scale-up Process fingerprint analysis by environmental and techno-economic assessment Biomass supply chain study and design of a waste management strategy for rural development By valorising 50% of the unavoidable and undervalorised AFW as feedstock for biobutanol production, WASTE2FUELS could divert up to 45 M tonnes of food waste from EU landfills, preventing 18 M tonnes of GHG and saving almost 0.5 billion litres of fossil fuels.


Grant
Agency: Cordis | Branch: FP7 | Program: MC-ITN | Phase: FP7-PEOPLE-2012-ITN | Award Amount: 4.06M | Year: 2013

Current applications of microwave technologies in communications, remote sensing and in industry are based on the properties of the interaction of microwaves with matter at supra-wave length scales (above centimetres). The developments performed in Nanotechnology in recent years makes now conceivable to explore the interaction of microwaves with matter at much smaller scales, from micrometres to nanometres. At these sub-wave length scales it is expected that fascinating new physical phenomena may appear, which will give rise to new applications of microwave technologies with high added value, in particular, in field such as nano-electronics, nano-spintronics, nanobiology and nano-medicine. Being an emerging technology there is a need for training early stage researchers in this field of research so that enough critical mass can be achieved. The main objective of this network is to train a whole generation of researchers in the field of nanoscale microwave technologies and related emerging applications in the fields of semiconductor industry and life sciences. The researchers of the network will acquire a state of the art multidisciplinary scientific training in this field of research, covering from basic science to industrial applications, thus enabling them to generate new knowledge with high impact. In addition, they will receive a practical training on transferable skills in order to increase their employability perspectives and to qualify them to access to responsibility job positions in the private and public sector. The final aim of the network is to help Europe to position and consolidate in a leading position in the field of nanoscale microwave technologies and related applications.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-16-2015 | Award Amount: 5.99M | Year: 2016

Chimeric antigen receptors (CARs) are artificial surface receptors that can be introduced into somatic cells by genetic engineering and that act as recognition molecules like antibodies or T-cell receptors. In this respect, CARs are increasingly used for cellular therapy to redirect T-cells specifically towards killing of cancer cells. Recent success stories of cancer therapy with CAR modified T-cells have raised enormous scientific and public expectations to cure severely ill patients. However, there are still many obstacles to overcome for translation into clinics because the technology for GMP-compliant manufacture of genetically modified cellular products is extremely complex and expensive. Moreover, CAR therapy needs to be improved with respect to off-target activity, safety and potency. Consequently, the envisaged project is overall aiming at a particular technological breakthrough in cellular cancer therapy by delivering a comprehensive CARAT platform explicitly tailored for automated, easy-to-handle and cost-efficient manufacture of CAR-modified ATMP. Specifically, we aim: (a) to implement unique next-generation cell processing tools like the CliniMACS Prodigy (b) to develop advanced enabling technologies to obtain more effective and safer cellular products by improved gene delivery and innovative CARs design (c) to assemble tools and technologies towards an integrated CARAT process for automated GMP-compliant manufacture of gene-modified T-cells (d) to demonstrate proof-of-concept and regulatory compliance (e) to disseminate broadly applicable, simplified CAR T-cell technologies In summary, our vision is to overcome current hurdles for translation of cellular therapies and to elevate them to the next level of standard-of-care thus serving patients with so far incurable solid tumours and hematologic malignancies. Thereby, we will empower Europe to become a global leader in the development and commercialisation of CAR T-cell tools and technologies.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: EO-2-2015 | Award Amount: 2.99M | Year: 2016

With the start of the SENTINEL era, an unprecedented amount of Earth Observation (EO) data will become available. Currently there is no consistent but extendible and adaptable framework to integrate observations from different sensors in order to obtain the best possible estimate of the land surface state. MULTIPY proposes a solution to this challenge. The project will develop an efficient and fully traceable platform that uses state-of-the-art physical radiative transfer models, within advanced data assimilation (DA) concepts, to consistently acquire, interpret and produce a continuous stream of high spatial and temporal resolution estimates of land surface parameters, fully characterized. These inferences on the state of the land surface will be the result from the coherent joint interpretation of the observations from the different Sentinels, as well as other 3rd party missions (e.g. ProbaV, Landsat, MODIS). The framework allows users to exchange components as plug-ins according to their needs. The proposal is based on the EO-LDAS concepts developed within several ESA-funded projects, which have shown the feasibility of producing estimates of the land surface parameters by combining different sets of observations through the use of radiative transfer models. We will provide a fully generic flexible data retrieval platform for Copernicus services that provides integrated and consistent data products in an easily accessible virtual machine with advanced visualisation tools. Users will be engaged throughout the process and trained. Moreover, user demonstrator projects include applications to crop monitoring & modelling, forestry, biodiversity and nature management. Another user demonstrator project involves providing satellite operators with an opportunity to cross-calibrate their data to the science-grade Sentinel standards.


RECREATE is a policy support network that will collect strategic and analyse information about medium and long term research and innovation trends and prospects. The aim of RECREATE is to overcome this fragmentation, and to create a clear cut research agenda for the Horizon 2020 priority of climate change, raw materials and resource efficiency using an RTD perspective for a transition management strategy that (a) looks at the trade-offs and synergies between raw materials, resource efficiency and climate change mitigation, (b) engages key stakeholders in a pro-active manner, and (c) has a perspective beyond the year 2020. RECREATE seeks to Engage a wide range of stakeholders (industry, academia, research, etc) to create an effective, dynamic and sustainable network. Provide policy makers with a detailed mapping of the most relevant actors and initiatives in the fields of Climate Change, Resources Efficiency and Raw Materials across Europe and overseas. Provide the policy makers with detailed information regarding medium and long term research and innovation trends and prospects, and carry out forward looking analysis in the areas of Climate Change, Resources Efficiency and Raw Materials. Propose, deploy and monitor indicators for assessing the impact (in terms of policy, economy, society, sustainability) of EU R&I cooperation both within the EU and overseas. Produce regular quantitative and qualitative briefings with information, trends and strategic options for R&I addressed to EU research managers and policy makers. RECREATE is a balanced partnership that combines key players in the areas of raw materials, resource efficiency and climate actions, at scientific and industry levels, with strong methodological knowledge partners, ensuring that the network has in depth knowledge about the issues, the challenges and the R&D policies in these fields of the Commission and globally, has access to the essential stakeholders outside the direct consortium, from academia has sound proven state of the art methods for collecting data, building sets of indicators, developing a scoreboard, building secnarios, carrying our foresight analyses and impact assessments.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: HEALTH.2013.2.1.1-1 | Award Amount: 16.16M | Year: 2013

Recently intense research identified around 4,000 single nucleotide polymorphisms (SNPs) associated with human age related diseases such as metabolic disorders. Despite their highly significant association to pathology, the functional role of these genetic variants is, in most cases, yet to be elucidated. The evolutionary distance of most animal models from humans represents a major limitation for the functional validation of these SNPs. To overcome these difficulties, HUMAN will generate mouse models carrying human hepatocytes or pancreatic cells from either primary cells (hepatocytes) or induced pluripotent stem cells (iPSCs). This innovative approach offers the unique possibility of studying function of genetic risk variants associated with metabolic diseases in an integrated living system (the mouse body), but within human-derived organs, i.e. liver and pancreas. iPSCs used to generate hepatocytes and cells will derive from extreme phenotypes, i.e. patients affected by severe metabolic diseases such as type 2 diabetes (T2D) or subjects selected for exceptional healthy longevity (subjects over 105 years and offspring of nonagenarian sibships) all fully clinically and metabolically characterised and genotyped; they will be selected according to the best combination of risk and protective alleles. We will test the effect of different nutritional regimes (e.g. high fat diet, caloric restriction), to disentangle the complex molecular mechanisms and circuitry across organs (e.g. hypothalamus-liver axis) which lead to pathology. HUMAN associates a core of outstanding basic research institutions to leading European biotech SMEs, and has the capability to produce at least 500 humanised mice. HUMAN will generate iPSCs biobanks and comprehensively manage all associated information. HUMAN is uniquely situated to drive innovation towards a better knowledge of the genetic basis of human metabolic diseases, thereby contributing to healthier aging of European citizens.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: SPA.2013.1.1-03 | Award Amount: 7.00M | Year: 2013

Policy makers are increasingly relying on Earth Observation (EO) data to make decisions on mitigating and adapting to climate change. These decisions need to be evidence-based and this requires complete confidence in EO-derived products. Although EO data is plentiful, it is rare to have reliable, traceable and understandable quality information. The situation is often further confused because various versions of the same product exist from data providers using different retrieval algorithms. Users need an internationally acceptable Quality Assurance (QA) framework that establishes, and provides understandable traceable quality information for the data products used in Climate Services. This will ensure that long-term data sets are historically linked and, in the future, automatically harmonised in an efficient and interoperable manner. The Quality Assurance for ECVs (QA4ECV) project will address these issues by developing a robust generic system for the QA of satellite and in-situ algorithms and data records that can be applied to all ECVs in a prototype for future sustainable services in the frame of the GMES/Copernicus Climate Change Service. Multi-use tools and SI/community reference standards will be developed. The QA4ECV project will generate quality-assured multi-decadal Climate Data Records for 3 atmospheric ECV precursors (NO2, HCHO, and CO) and 3 land ECVs (albedo, LAI, and FAPAR), with full uncertainty metrics for every pixel ready for model ingestion. The generic QA framework will be applied to these ECVs. QA4ECV will engage with all stakeholders, including other ECV projects, governance bodies and end-users, developers of Climate Services and relevant projects. The QA4ECV project will show how trustable assessments of satellite data quality and reliable means of interoperability can facilitate users in judging the fitness-for-purpose of the ECV Climate Data Record. QA4ECV will be a major step forward in providing quality assured long-term Climate Data Records that are relevant for policy and climate change assessments.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.2.2.1-5 | Award Amount: 8.54M | Year: 2014

Neuropathic pain has a high incidence in Europe and often affects the patients emotional balance and quality of life. Recent meta-analyses have shown that conventional analgesic drugs are not sufficiently effective in these patients and are limited by serious side effects. The search for new analgesics is extremely difficult despite identification of several new potential targets and enormous investment by the pharmaceutical industry. Important reasons for this failure are the poor predictive validity of currently available animal models of chronic pain, that do not simulate multidimensional clinical pain, and the high inter-individual variability of neuropathic pain manifestations and treatment responses. We will overcome these obstacles by an interdisciplinary collaboration between basic science groups, clinicians and leading private companies. This consortium will validate new animal models to evaluate the electrophysiological, behavioural, emotional and cognitive manifestations of neuropathic pain and the effectiveness of novel compounds. The use of these models in combination with other behavioural paradigms and new conditional knockout mouse lines for specific components of the endogenous opioid and cannabinoid system will permit the identification of novel druggable targets and biomarkers for neuropathic pain. Novel analgesic compounds acting on these endogenous systems developed by the private companies of the consortium will be tested in these new paradigms. Clinical studies will identify novel biomarkers for neuropathic pain using powerful genetics approaches and investigate treatment effectiveness with a translational focus based on cross validation of the findings in animals and humans.


The clinical evidence indicates that the number of people with all levels of hearing impairment and hearing loss is rising mainly due to a growing global population and longer life expectancies. Hearing loss caused by pathology in the cochlea or the cochlear nerve is classified as sensorineural hearing loss. The study of the normal function and pathology of the inner ear has unique difficulties as it is inaccessible during life and so, conventional techniques of pathologic studies such as biopsy and surgical excision are not feasible.\nSIFEM focuses on the development of a Semantic Infostructure interlinking an open source Finite Element Tool with existing data, models and new knowledge for the multi-scale modelling of the inner-ear with regard to the sensorineural hearing loss. The experts will have access to both the data (micro-CT images, histological data) and inner ear models, while the open-source developed tools and the SIFEM Conceptual Model will be contributed to the VPH toolkit enhancing their reusability. These SIFEM open source tools and services enhance and accelerate the delivery of validated and robust multi-scale models by focusing on: (i) Finite Element Models manipulation and development, (ii) cochlea reconstruction and (iii) 3D inner ear models visualization.\nThe final outcome is the development of a functional, 3D, multi-scale and validated inner-ear model that includes details of the micromechanics, cochlea geometry, supporting structures, surrounding fluid environment and vibration patterns. In the open context that the project addresses the results can be used to better identify the mechanisms that are responsible for the highly sensitive and dynamic properties of hearing loss. These result to the description of alterations that are connected to diverse cochlear disorders and assist the experts to better assess each patients condition leading to more efficient treatment and rehabilitation planning and, in long-term, to personalized healthcare.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.2.2.1-2 | Award Amount: 7.78M | Year: 2013

Our proposal is based on the idea that real-time functional neuroimaging can be used to train patients to regulate their own brain activity via neurofeedback training and thus modulate the brain networks of mental disorder, restore function, improve symptoms and promote resilience. We have brought together the core groups that have been instrumental in the development of methods for real-time functional imaging and fMRI (functional magnetic resonance)-based neurofeedback and have led the initial clinical applications in neuropsychiatric disorders. Our proposal has three main components, the development and refinement of methods for the real-time analysis and feedback of fMRI data and combination with other imaging modalities (WP2), the adaptation of fMRI mapping techniques to localise disease-relevant networks and development of protocols for their self-regulation through neurofeedback (WP3) and the assessment of feasibility and clinical effects in several mental disorders that are characterised by dysfunctional brain systems for motivation, emotion regulation and social communication and by important therapeutic gaps (autism spectrum disorders, alcohol addiction, post-traumatic stress disorder, childhood anxiety disorders, binge-eating disorder) (WP4). We will also explore the potential transfer of (laboratory-based) imaging feedback training into everyday settings through ambulatory and assistive technologies such as electroencephalography (EEG) and gaming (WP5). We will engage with potential users of these technologies (healthcare professionals and providers, medical instrument and software manufacturers, patient and carer associations) through several workshops, liaise with regulatory authorities and disseminate findings to the academic and user communities in WP6.


The decision-making in chemotherapy nowadays depends on standard methods that are liquid chromatography (LC-MS/MS) followed by mass spectrometry or capillary electrophoresis; both are labour- and cost-intensive and can be performed only in dedicated hospitals and laboratories. This lead to a minimal therapeutic drug monitoring in patients and hence that 30-60% of drugs are administered without clinical benefits. We propose to develop a point-of-care device for quantification of chemotherapeutic drugs in small body fluid samples by highly selective nanoparticle extraction and liquid crystal detection incorporated in microfluidic lab-on-chip device (optofluidics based) allowing the real-time drug monitoring. This will improve the therapeutic outcome and reduced health care costs.


Grant
Agency: Cordis | Branch: FP7 | Program: NoE | Phase: SEC-2012.7.4-2 | Award Amount: 5.55M | Year: 2014

VOX-Pol is a 60-month, 5\ million project that integrates the worlds leading researchers and research groups in Violent Online Political Extremism (VOPE), to include those researching the intersection of terrorism and the Internet (incl. violent jihadists, violent separatists, etc.), the online activities of the extreme Right, the potential for violent online radicalisation, etc., in order to: 1. Create a sustainable critical mass of innovative activity among what is currently a burgeoning, but fragmented group of researchers and research topics. 2. Ensure that EU and MS strategies and policies targeting VOPE are based on concrete evidence, experience, and knowledge about the contours and workings of VOPE and thus increasing their likelihood of success. VOX-Pol will: Integrate and network the research activities of those, within the EU and globally, working in the area of VOPE Create and develop long-term relationships between established national research groups, new researchers and research groups, security practitioners, the Internet industry, civil society, and policymakers leading to the development of a multi-disciplinary Virtual Centre of Excellence for Research in VOPE Be based on collaborative research among partners both within and outside the Network, with all contributing towards the development of an archive of politically extreme Internet-based content and a related URL database, which will be the basis for joint research activity, the development of new analytical tools and methodologies, teaching and training, and dissemination activities Raise awareness of the challenges of research and decision-making in this area by exploring the interplay of e-research ethics, privacy, surveillance, freedom of speech, and practices of and responses to VOPE Influence research agendas on the European and world stages in key aspects of VOPE Inform policy agendas on national, European, and international levels in key aspects of responses to VOPE.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-01-2014 | Award Amount: 6.14M | Year: 2015

The objective of the ATHLOS Project is to achieve a better understanding of ageing by identifying patterns of healthy ageing pathways or trajectories, the determinants of those patterns, the critical points in time when changes in trajectories are produced, and to propose timely clinical and public health interventions to optimise healthy ageing. Moreover, a new definition of old age based on many characteristics rather than just the classical chronological definition of age will be used for calculating projections in each specific population and guide policy recommendations. To do so, the Consortium will create a harmonised dataset with over 341,000 individuals collated from existing longitudinal studies of ageing and including information on physical and mental health, biomarkers, life style habits, social environment and participation, among others. A single metric of healthy ageing using Item Response Theory (IRT) methods with individual items from the surveys will be used. Diverse statistical methods will be employed to define the trajectories (Generalised Estimating Equations, Structural Equation Modelling, Growth Curve Mixture Modelling, the TRAJ method and classification algorithms). Age Period Cohort will be used in the analysis to understand age cohort effects. Specific interventions both at the clinical and population level will be designed based on projects results and will be disseminated. Additionally, the impact of those interventions on healthy ageing will be assessed with the micro-simulation method. Stakeholders will participate in the definition of outcomes, the creation of interventions and dissemination of results. ATHLOS will make available to scientists and stakeholders its resources by providing access to the methodology of harmonisation and to the mega-data set of ageing cohorts. To maximise the policy impact, target audiences will be indentified and specific materials disseminated.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: SEC-2013.6.1-2 | Award Amount: 3.59M | Year: 2014

The PRIME project will support the design of technologies (counter-measures and communication measures) for the prevention, interdiction and mitigation of lone actor extremist events (LOEEs), which are hard to anticipate, yet can be highly damaging to local and national communities and therefore must be addressed. Given the difficulty in detecting LOEEs, prevention-based strategies must be complemented by interdiction- and mitigation-based measures, to minimize harm in the event of detection failure. These measures must be accompanied by communication strategies aimed at a range of audiences, including extremists and the general public. The PRIME project will deliver a knowledge-base to inform the design of measures to defend against LOEEs, by achieving the following objectives: 1): Characterising a) the risk posed by lone actor extremists, and b) the context in which measures to defend against LOEEs may be implemented; 2) Producing a cross-level risk analysis framework within which to articulate the key factors and processes implicated in LOEEs, across all stages of the event (radicalisation, attack preparation, attack). 3): Translating the risk analysis framework into a meta-script of lone actor extremist events, and developing methodologies and techniques to produce empirically-supported scripts of each stage. 4): Producing an integrated, cross-level script of LOEEs, and identifying categories of intervention points or pinch points. 5): Delivering a portfolio of requirements for the design of measures for the prevention, interdiction and mitigation of lone actor extremist events across levels of intervention, informed by the analysis of the event script and an understanding of the context in which these measures may be implemented. 6): Delivering a portfolio of requirements for communication measures directed at a diverse audience at each stage of the script, in coordination with the portfolio of counter-measures.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-01-2014 | Award Amount: 7.26M | Year: 2015

The dramatic differentials in healthy ageing, quality of life and life expectancy between individuals of different socioeconomic groups, is a major societal challenge facing Europe. The overarching aim of the LIFEPATH project is to understand the determinants of diverging ageing pathways among individuals belonging to different socio-economic groups. This will be achieved via an original study design that integrates social science approaches with biology (including molecular epidemiology), using existing population cohorts and omics measurements (particularly epigenomics). The specific objectives of the project are: (a) To show that healthy ageing is an achievable goal for society, as it is already experienced by individuals of high socio-economic status (SES); (b) To improve the understanding of the mechanisms through which healthy ageing pathways diverge by SES, by investigating lifecourse biological pathways using omic technologies; (c) To examine the consequences of the current economic recession on health and the biology of ageing (and the consequent increase in social inequalities); (d) To provide updated, relevant and innovative evidence for healthy ageing policies (particularly health in all policies) that address social disparities in ageing and the social determinants of health, using both observational studies as well as an experimental approach based on the existing conditional cash transfer experiment in New York. To achieve these objectives we will use data from three categories of studies: 1. Europe-wide or national surveys combined with population registry data; 2. Cohorts with intense phenotyping and repeat biological samples (total population >33,000); 3. Large cohorts with biological samples (total population >202,000). The cohorts will provide information on healthy ageing at different stages of life, based on the concepts of life-course epidemiology (build-up and decline) and multimorbidity.


Fanconi anemia (FA) is a rare inherited syndrome characterized by the early development of bone marrow failure and increasing predisposition to cancer with age. Allogeneic hematopoietic cell transplantation (alloHCT) is the only curative therapy for hematopoietic manifestations of FA, although associated with complications arising from myeloablation, graft versus host disease and increased incidence of squamous cell carcinoma. The genetic correction of autologous hematopoietic stem cells (HSC) with lentiviral vectors constitutes a recent and safe alternative for the treatment of different genetic diseases affecting mature cells from different tissues and/or committed progenitors of the hematopoietic system. One of the key features of FA that make it a unique disease for gene therapy approaches rely on the characteristic proliferation defect that is already evident in the very primitive HSCs. Thus, a marked survival advantage would be expected from corrected HSCs, potentially allowing normalization of hematopoiesis in the absence or after mild conditioning. Difficulties in the collection of sufficient numbers of HSC from FA patients and the use of sub-optimal transduction protocols with gammaretroviral vectors limited the success of FA gene therapy trials conducted 10 years ago in the USA. Our innovative approach to develop for the first time an efficient and safe gene therapy of FA is based on two recent innovations: 1) Discovery of potent HSC mobilizers, such as plerixafor, and 2) Development of a new lentiviral vector by members of this Consortium, designed as Orphan Drug by the EC in December 2010. The principal objective of this Project is, therefore, the development of a multicentric Phase I/II gene therapy trial for FA-A patients, based on the genetic correction of plerixafor\G-CSF mobilized HSCs with the novel lentiviral vector, accompanied by comprehensive and groundbreaking safety and efficacy patient monitoring studies.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2013.8.1 | Award Amount: 3.56M | Year: 2013

Videogames are one of the most relevant creative industries in Europe - encompassing almost 100,000 individuals with countries like UK, France and Finland representing the excellence in game development internationally. The market is very interesting, but very competitive too, with an increasing demand of games that are bigger, better and with more realistic computer graphics.\n\nSuch qualitative and quantitative advancements in videogames present many draw backs for developers related to increasing costs, need of complex management systems, longer asset creation pipelines etc.. These factors have direct negative consequences on the videogames industry in Europe: they reduce the number of titles released, impede creativity involved (a typical equation is: the more original the idea resulting in a bigger risk and thus lower investment), they stifle innovation and this may cause a financial overexposure of developers.\n\nIn CR-PLAY we propose an innovative mixed pipeline for videogames development which will drastically reduce both time and expenses involved in the creation of assets, and make high quality realistic contents accessible even to small game developers. Game developers will be able to capture and reconstruct houses, buildings, trees and other real life elements by simply taking a few sequences of photos and videos to be processed by the semi-automatic software created in the project and integrated with traditional assets made of polygons and textures.\n\nCR-PLAYs approach will represent a major shift in the content creation pipeline for games, with an important positive impact on development costs and time-to-market. The simplicity, speed and quality of the new pipeline will have far-reaching consequences, freeing resources to achieve more creative games faster and cheaper and consequently giving a significant competitive edge to the European SMEs in the game sector.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-13-2014 | Award Amount: 5.83M | Year: 2015

Hearing loss is a chronic non-communicable disease disabling over 328 million adults, and 32 million children worldwide. Sensorineural hearing loss due to loss of auditory hair cells was long thought to be irreversible. However, recent animal studies have demonstrated that pharmacological inhibition of cell signalling via Notch receptors using gamma-secretase inhibitors (GSIs) can regenerate hair cells and partially restore hearing capacity. This novel therapeutic concept provides the first promising lead for actual treatment of hearing loss. Clinical validation of these findings is the next crucial stepping stone in the development of a regenerative therapy for hearing loss. The ambition of REGAIN is to repurpose a GSI molecule for this indication by shifting from systemic to local treatment. The objective of the REGAIN project is to demonstrate and exploit the efficacy of locally administered GSIs to improve hearing through regeneration of inner ear hair cells with a lasting effect. The project will involve 1) the upscaling of GMP production of the clinical GSI candidate, 2) the generation of preclinical data on GSI dosing and local safety, 3) medical ethical clinical trial approval and 4) the demonstration of proof of concept for GSI for treatment of patients with recent onset sensorineural hearing loss. Small molecule drugs targeting the underlying biological causes of hearing loss in a safe way are expected to meet a real medical need for millions of patients, who currently rely on the limited benefits provided by hearing aids or cochlear implants. The partners involved in REGAIN represent the current state of the art in regenerative hearing loss research in the EU. REGAIN will break through that current state of the art, and will advance the first highly promising pharmaceutical treatment of hearing loss through clinical testing.


Grant
Agency: Cordis | Branch: FP7 | Program: MC-ITN | Phase: FP7-PEOPLE-2012-ITN | Award Amount: 3.82M | Year: 2013

Despite the past century witnessing considerable advances in our understanding of genetics, the success of genome-wide association studies (GWAS) in detecting putative causal variants has been tinged with disappointment as the effects found have been modest. Epigenetics promises a novel biological foundation of a new way of looking at common diseases because it responds to the environment and governs gene expression - thus potentially mediating a path from environmental effects to gene expression to behavior. The primary objective of the EpiTrain Research Training Network is to promote integrative training-through-research in the field of epigenetics, especially of young researchers, both pre- and post-doctoral level, within the frame of high quality international collaborations. By integrating academic and private institutions with specializations in technological, analytical and computational aspects of epigenetic research, the training program will not only provide insights into research techniques and paradigms complementary to the individual projects, but will also strengthen professional skills and enhance the career prospects of the fellows.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2014-ETN | Award Amount: 3.05M | Year: 2015

Over 50 million people worldwide have epilepsy and 30% are resistant to our present therapies. Epilepsy, therefore, comprises a major burden to society and so there is a pressing need for new approaches to treatment. The brain extracellular matrix (ECM) plays a critical role in governing brain excitability and function. Although research into the role of the ECM in neuronal signalling and network function has advanced considerably in recent years, its full translational potential has yet to be realised. There is growing evidence for a major role of the ECM in epilepsy including the association between ECM protein mutations and epilepsy, changes in the ECM and associated proteins during the development of epilepsy and the strong association between the ECM and brain diseases associated with epilepsy including stroke, traumatic brain injury, neurodegeneration and autism. This proposal brings together considerable expertise from academic and industry partners in the biology of the ECM with experts in epilepsy research. This, therefore, represents a truly collaborative effort to determine not only the role of the ECM in the development of epilepsy but also novel approaches to treat and to prevent epilepsy. The academic partners will focus on specific research questions, whilst the industrial members will provide diagnostic, treatment and advanced research tools. The project has a strong translational theme and the combination of basic and translational science will be of great benefit for the training of young researchers. Trainees will be exposed to courses, workshops, joint research meetings and inter-laboratory visits. The focus of the training programme is on expanding knowledge and the application of such knowledge to address pertinent question relevant to the diagnosis, prognosis and treatment of epilepsy, so providing an ideal insight into translational neuroscience.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Fellowship | Award Amount: 721.30K | Year: 2016

My proposed Fellowship will revolutionise the use of High Performance Computing (HPC) within The University of Sheffield by changing perceptions of how people utilise software and are trained and supported in writing code which scales to increasingly large computer systems. I will provide leadership by demonstrating the effectiveness of specific research software engineer roles, and by growing a team of research software engineer at The University of Sheffield in order to accommodate our expanding programme of research computing. I will achieve this by: 1) developing the FLAME and FLAME GPU software to facilitate and demonstrate the impact of Graphics Processing Unit (GPU) computing on the areas of complex systems simulation; 2) vastly extending the remit of GPUComputing@Sheffield to provide advanced training and research consultancy, and to embed specific software engineering skills for high-performance data parallel computing (with GPUs and Xeon Phis) across EPSRC-remit research areas at The University of Sheffield. My first activity will enable long-term support of the extensive use of FLAME and FLAME GPU for EPSRC, industry and EU-funded research projects. The computational science and engineering projects supported will include those as diverse as computational economics, bioinformatics and transport simulation. Additionally, my software will provide a platform for more fundamental computer science research into complexity science, graphics and visualisation, programming languages and compilers, and software engineering. My second activity will champion GPU computing within The University of Sheffield (and beyond to its collaborators and industrial partners). It will demonstrate how a specific area of research software engineering can be embedded into The University of Sheffield, and act as a model for further improvement in areas such as research software and data storage. I will change the way people develop and use research software by providing training to students and researchers who can then embed GPU software engineering skills across research domains. I will also aid researchers who work on computationally demanding research by providing software engineering consultancy in areas that can benefit from GPU acceleration, such as, mobile GPU computing for robotics, deep neural network simulation for machine learning (including speech, hearing and Natural language processing) and real time signal processing. The impact of my Fellowship will vastly expand the scale and quality of research computing at The University of Sheffield, embed skills within students and researchers (with long-term and wide-reaching results) and ensure energy-efficient use of HPC. This will promote the understanding and wider use of GPU computing within research, as well as transitioning researchers to larger regional and national HPC facilities. Ultimately my research software engineer fellowship will facilitate the delivery of excellent science whilst promoting the unique and important role of the Research Software Engineer.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.1.2-1 | Award Amount: 7.84M | Year: 2013

BIOIMAGE-NMD will develop and apply imaging technology to monitor response to novel therapies in neuromuscular diseases (NMD) and will use Duchenne muscular dystrophy (DMD) as an exemplar disease. DMD is well characterised genetically and clinically but to date a disease modifying treatment is not available. One of the most promising developments for future treatment of NMD is RNA modulation through antisense oligonucleotides (AON). In DMD, AON are used for exon skipping and this is a genuine example of personalised medicine, where patients are treated according to their specific gene mutation. Quantitative Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopic Imaging (MRSI) are used to assess structural and metabolic muscle pathology in NMD but their effectiveness in monitoring therapy is yet to be shown. The project will apply a simultaneous MRI/MRSI protocol in multi-centre clinical trials of AON therapy in DMD with the aim of establishing a clinical proof of principle that these imaging measures are effective biomarkers of therapeutic response. To enhance the imaging protocol, novel Diffusion Tensor MRI (DTI) methods will be developed and optimised to assess muscle microstructure and applied in these trials. The project will also develop methods for radiolabelling of AON and demonstrate the use of pre-clinical Positron Emission Tomography (PET)/MRI to assess the tissue targeting, bio-distribution and pharmacokinetics of AON in vivo. BIOIMAGE-NMD will deliver PET/MRI and MRI/MRSI technologies for both drug development and clinical evaluation roles which will significantly contribute to bringing personalized therapeutic interventions in rare and common diseases to the market.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-TP | Phase: NMP.2013.2.2-1 | Award Amount: 5.74M | Year: 2014

Approximately 42% of infants mortality in the world is related to congenital heart defects (prevalence: 8-12/1000 births). Over 1/3 require the reconstruction of the right ventricular outflow tract (RVOT) by surgical procedures which currently use inert materials without any growth potential. Consequently, multiple reoperations are often required, with their attendant high risk of mortality and morbidity. The TEH-TUBE project will address these limitations by creating a novel bioabsorbable biomaterial using a polymeric valved tube either seeded with autologous adipose tissue derived stem cells (ADSC) or functionalized by a peptidic sequence triggering homing of the host cells onto the scaffold to make it a living self-populated structure. During the project we will: Compare 3 different polymers (polydioxanone, polyhydroxyalkanoate, poly-ester-urethane-ureas) processed by electrospinning to generate a competent valved tube Compare, in the selected polymer, ADSC seeding and peptide grafting using in vitro mechanical and biological tests as well as in vivo animal experiments (primarily rats) Validate the ultimate combination (polymer \ cells or peptides) in a clinically relevant large animal model (in this case, the growing lamb to specifically assess the regenerative and growth potential of the composite construct) This stepwise approach will be conducted within a tightly controlled regulatory framework to ensure that the final product meets the current ATMP requirements for phase I/II clinical studies and, if successful, ultimate commercialization. Our TEH-TUBE project aims at developing an innovative biomaterial for the treatment of congenital heart abnormalities in children and young adults. By creating a material whose growth will keep pace with that of the patient, this product, geared to become an ATMP, should decrease the risk of reoperative surgeries, improve the quality of life and ultimately have a positive impact on healthcare costs.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2011.2.1 | Award Amount: 4.31M | Year: 2013

Recent efforts in robotics and automation research have fostered the development of a wide variety of bio-inspired snake-like continuum robots. These robots require radically different controllers and control schemes compared to conventional rigid robots, but continuum control has not received significant attention in the scientific community. Robotic catheters are a particularly challenging specialization of continuum robots because the vascular tree surrounding the catheter is complex, delicate, deformable and highly dynamic. This challenge is further complicated by the limited visibility during the procedure. CASCADE will develop a unified control framework for continuum robots that can operate in complex and deformable environments and specifically in the cardiovascular system. The project will construct general mathematical descriptions of the continuum robot and its surroundings while model parameters will be identified during clinical operation. In cases where fusing pre-operative data with intra-operative sensors does not provide sufficient information to allow reliable decision-making, active sensing techniques will be adopted. An interface to the supervising surgeon will enable cognitive links between the operator and the continuum robot, facilitating complementary assistance during autonomous execution of surgical tasks. The interface will also be used for learning and robotic training and further for validation of techniques using identified clinical benchmarks. The resulting development will allow the control of local (interaction force / stiffness) and global (shape) robot states at an unprecedented level of detail. The developed skill analysis tools will be used to verify the achievable control performance of continuum robots in catheter procedures. In particular, CASCADE will advance the treatment of cardiovascular diseases by providing a new dexterous and intelligent instrument that is initially focused on endovascular aortic valve replacement.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2014-ETN | Award Amount: 3.83M | Year: 2015

iSwitch will offer top-level multi-disciplinary and supra-sectorial training to a pool of talented young researchers, involving contributions from different scientific and technological fields such as, supramolecular chemistry, materials, nanoscience, physics and engineering. iSwitchs appointees will be trained through lecture courses, dedicated international schools and workshops, topical conferences, secondments to other consortium nodes and an ambitious and carefully planned research activities benefiting from the expertise of world-leading senior PIs and of younger but well-established PIs with outstanding track records in training and research. Additionally, iSwitch will generate new ground-breaking S&T knowledge needed to obtain efficient and fast switching in supramolecular electro- and opto-active materials as a response to external stimuli. This will be accomplished via controlled self-assembly of multicomponent architectures incorporating molecular switches, for fabricating responsive and multifunctional optoelectronic supramolecular devices. We are particularly interested in developing nano- and macro-scale switchable transistors and light-emitting devices as new solutions to (nanoscale) multifunctional organic-based logics. The specific training and research objectives are: - Design and synthesis of a (macro)molecular toolbox including electroactive and responsive systems as well as semiconducting and metallic nanostructures - Controlled interfaces of switches on (non)planar surfaces - Self-assembly of multicomponent systems into multifunctional architectures and materials - Multiscale structural, optical and electrical characterization of systems including Scanning Probe studies and time-resolved spectroscopy - Fabrication and characterization of switchable devices, i.e., transistors for logics and light-emitting devices for photonics, and related applications (optical illumination, optical filtering/landscaping, optical sensors, photovoltaics, etc.)


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2014-ETN | Award Amount: 3.66M | Year: 2015

The CREEP Innovative Training Network is a training and career development platform for early stage researchers (ESRs) in Geodynamics, Mineral Physics, Seismology, Fluid Mechanics, and Materials Sciences. It aims to structure the collaboration in research and doctoral training between 10 leading academic centers in Earth Sciences in Europe: the CNRS (FR), represented by Geosciences Montpellier and the FAST Orsay, the universities of Bristol, Durham and UCL (UK), Munster and Mainz (DE), Roma TRE (IT) and Utrecht (NL), and as a partner organization: ETH (CH), and 11 partner organizations whose activity encompasses a variety of industrial applications of rheology: oil (Baker Hughes, Schlumberger) and chemical industries (AkzoNobel), glass (Schott) and steel (APERAM) producers, and high-technology SMEs (Rockfield, IGEM, GMuG, MP Strumenti, Geospatial Research, Reykjavik Geothermal). CREEP will provide training to 16 early stage researchers (among which 2 will be self-funded by partner ETH) via a structured program of cross-disciplinary collaborative research, specialized short courses, and workshops. This experience-based training is centered on research projects leading to a PhD that focus on the complex mechanical behavior of Earth materials and its implications for geodynamic and industrial processes. These research projects cover a large spectra of applications from the study of the deformation of the Earth surface (earthquakes) and deep layers to geothermal and petroleum exploration and industrial processes. Through them, the ESRs will acquire skills in experimentation, modelling of deformation at various space and time scales, and seismology. CREEP will also provide the ESRs: (1) essential career-management skills via courses and practical activities aimed to develop their organizational, management and networking skills and (2) experience and understanding of the impact of research for the private sector via secondments in the industrial partners.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2014-ETN | Award Amount: 3.91M | Year: 2015

The PACE research and training programme sits at the interface between basic science, technology and clinics, in order to unveil how humans control and adapt their movements in complex, naturalistic environments. Such a research agenda has major consequences for understanding how these movements are impacted by specific brain insults and how these impairments can be compensated for via new rehabilitation methods. Improving rehabilitation programmes for sensory and motor disabilities across the lifespan is a major societal challenge in western countries and many obstacles need to be overcome. To provide but one example, with regard to eye-hand coordination of upper limb movement remaining abilities are rarely assessed in stroke patients or sensory-disabled children and this impacts both prognostic estimation and rehabilitation. New technologies, such as robotics or virtual reality, provide an exciting change in perspective to transfer state-of-the-art knowledge from basic research on sensorimotor transformation into the clinical domain. To meet these societal challenges, it is crucial to train a new generation of early-stage researchers in a programme such as PACE where fundamental and applied/clinical research are effectively integrated via collaborative research, doctoral secondments and theoretical courses in other words, one in which clinicians, neuroscientists, theoreticians and engineers can contribute around a well-defined problem: how humans acquire, lose and recover movement performance. With 8 academic, 1 clinical and 1 private beneficiaries, and 5 partner organizations (4 industrial, 1 in science communication), PACE structures a training and research programme that is both highly interdisciplinary and intersectoral. Our goal is to meet both fundamental and clinical well-identified challenges as well as preparing young scientists for future european research & development in the fields of human movement studies and rehabilitation medicine.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: ICT-12-2015 | Award Amount: 3.58M | Year: 2016

The focus of TRIANGLE is the development of a framework that facilitates the evaluation of the QoE of new mobile applications, services and devices designed to operate in the future 5G mobile broadband networks. The framework will exploit existing FIRE facilities adding new facilities when necessary. The project will identify reference deployment scenarios, will define new KPIs (Key Performance Indicators) and QoE metrics, will develop new testing methodologies and tools, and will design a complete evaluation scheme. The project will focus on the development of a framework to ensure user QoE in the new challenging situations, especially those due to heterogeneous networks and considering the role software will have in the new 5G ecosystem. The framework as value added will also provide the means to allow certification and quality mark for the applications, services and devices compliant to the requirements and test specifications developed in the project but also extensible to other FIRE test solutions. This will allow vendor differentiation, specially startups and SMEs, in the current globalized and competitive markets and further visibility of FIRE facilities. The framework, methods and tools developed during the project will focus on providing the mechanisms to incorporate new wireless technologies and topologies envisaged in 5G and contribute to the new ecosystem.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: EINFRA-5-2015 | Award Amount: 4.94M | Year: 2016

This Centre of Excellence will advance the role of computationally based modelling and simulation within biomedicine. Three related user communities lie at the heart of the CoE: academic, industrial and clinical researchers who all wish to build, develop and extend such capabilities in line with the increasing power of high performance computers. Three distinct exemplar research areas will be pursued: cardiovascular, molecularly-based and neuro-musculoskeletal medicine. Predictive computational biomedicine involves applications that are comprised of multiple components, arranged as far as possible into automated workflows in which data is taken, from an individual patient, processed, and combined into a model which produces predicted health outcomes. Many of the models are multiscale, requiring the coupling of two or more high performance codes. Computational biomedicine holds out the prospect of predicting the effect of personalised medical treatments and interventions ahead of carrying them out, with all the ensuing benefits. Indeed, in some cases, it is already doing so today. The CoE presents a powerful consortium of partners and has an outward facing nature and will actively train, disseminate and engage with these user communities across Europe and beyond. Because this field is new and growing rapidly, it offers numerous innovative opportunities. There are three SMEs and three enterprises within the project, as well as eight associate partners drawn from across the biomedical sector, who are fully aware of the vast potential of HPC in this domain. We shall work with them to advance the exploitation of HPC and will engage closely with medical professionals through our partner hospitals in order to establish modeling and simulation as an integral part of clinical decision making. Our CoE is thus user-driven, integrated, multidisciplinary, and distributed; presenting a vision that is in line with the Work Programme.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 3.87M | Year: 2016

CHEurope focuses on developing a new integrated theoretical and methodological framework to enhance the academic and professional training and open future job opportunities in cultural heritage preservation, management and promotion. Heritage has commonly been perceived through its contingent relationship to other areas, preventing it to be considered as a legitimate scientific discipline. Moreover, research and practice in this field are still too often seen as separate dimensions. Thus, there is an increasing need to address these diverging trends in the expanding heritage industry with a critical approach that situates cultural heritage in its social, economic and political frameworks, as well as in professional practice. Bringing together a network of key European academic and non-academic organisations, the project will explore the processes by which heritage is assembled through practice-based research in partner institutions that connect students to their future job markets and publics. Our aim is to inform more conventional aspects of cultural heritage designation, care and management with a strong focus on present and future consumers. We propose an advanced learning strategy based on the emerging field of Critical Heritage Studies, which combines theoretical and instrumental knowledge at a transnational and interdisciplinary level, in a series of research seminars, summer schools and secondments. The program is based on themes where cultural heritage is undergoing profound change, such as Heritage Futures, Curating the City, Digital Heritage, Heritage and Wellbeing and Management and Citizen Participation. In so doing, this research will have a direct impact on future heritage policies and be linked explicitly to new modes of training. These will enable future practitioners to facilitate a more democratic and informed dialogue between and across various heritage industries and their users, promoting entrepreneurship and innovation in this field.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 3.90M | Year: 2017

We propose to forge a partnership between the leading European groups working on the next generation of solid state quantum emitters based on novel growth methods such as Droplet Epitaxy. Future, practical Nano-photonics and Quantum Circuits applications demand semiconductor quantum dots that can be grown on substrates with different lattice parameters (Si, Ge, GaAs), different substrate orientations (such as (001) and (111)) and tuneable optical, electrical and spin properties. All these requirements are met by high quality quantum dots grown with Droplet based Epitaxy techniques, circumventing the limitations of currently available systems based on strain-driven dot self-assembly. This vast novel research area at the crossroads of photonics, material science, quantum physics and nano-scale device fabrication will allow delivering top level multidisciplinary training to 15 early stage researcher (ESRs). The successful training of the ESRs by leading academic and 3 full industrial partners will be crucial for achieving the headline goals of this first ever consortium on droplet dot devices: (1) Entangled light emitting diodes with droplet dots grown on (111) substrates (2) Electrically triggered, droplet dot based single photon sources on Si/Ge substrates (3) Strain tuning in droplet dots without wetting layer: photon polarization and single spin control (4) Droplet Dot based single photon sources for non- classical light storage devices based on hybrid quantum systems (dots & laser-cooled atoms). The training and research progress will be discussed and monitored during the 4 project meetings, 3 summer schools and the final international conference on Droplet Dot Devices, all of which are open to the whole scientific community. We expect this network, based on the solid collaboration between growth groups, microscopists, quantum optics experimentalists and theorists to explore the full potential of this emerging technology.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-14-2015 | Award Amount: 6.00M | Year: 2016

The goal of BATCure is to advance the development of new therapeutic options for a group of rare lysosomal diseases - neuronal ceroid lipofuscinoses (NCL) or Batten disease. There are > thousand affected across Europe, with a combined incidence of c.1:100 000. The NCLs are devastating and debilitating genetic disorders that mainly affect children, who suffer progressive dementia and motor decline, visual failure and epilepsy, leading to a long period of complete dependence on others, and eventually a premature death. Existing palliative treatment can reduce, but does not eliminate, the burden of seizures and the progressively worsening effects on the whole body due to decreasing CNS influence and control. There are no curative treatments in the clinic for any type of NCL. We will follow a novel integrated strategy to identify specific gene and small molecule treatments for three genetic types of Batten disease that include the most prevalent world-wide, juvenile CLN3 disease, and in southern and mediterranean Europe, CLN6 and CLN7 diseases. To develop new therapies for these 3 types of Batten disease, BATCure will: 1. Create new models, tools and technologies for developing and testing therapies 2. Further delineate disease biology and gene function to identify new therapeutic target pathways utilising yeast and pluripotent stem cell models 3. Identify biochemical therapeutic target pathways, facilitate effective evaluation of preclinical therapies and improve diagnostics 4. Extend a comprehensive natural history beyond the brain to include cardiology, the spinal cord, PNS, psychiatric and metabolic changes 5. Identify new and repurpose existing small molecule therapy 6. Triage new compound treatments in zebrafish, a high-throughput small vertebrate model 7. Deliver and monitor new treatments using mouse models 8. Provide a novel mechanism to involve patients and their families to inform and fully contribute to therapy development and prepare for clinical trials


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SC5-03b-2014 | Award Amount: 3.93M | Year: 2015

The GREEN-WIN project will develop a major international transdisciplinary research collaboration to apply a solution-oriented approach targeted at increasing the understanding of links between climate action and sustainability and overcoming implementation barriers through win-win strategies. The project will critically assess where and under which conditions win-win and in particular green growth strategies work in practice and where fundamental trade-offs must be faced. We thereby focus on four critical barriers that have been identified by practitioners and policy makers. First, we develop transformative narratives highlighting opportunities in climate and sustainability action in order to contribute to overcoming cognitive barriers and empowering people. Second, we examine climate and sustainability finance policies and governance arrangements in order to contribute to overcoming financial barriers to mitigation and adaptation. Third, we substantiate the economics of green growth in order to contribute to overcoming economic and collective action barriers to de-carbonisation. Towards this end we introduce major innovations into the GEM-E3 computable general equilibrium model required to discover green growth strategies. These include developing a network-based model of technological diffusion, and introducing financial market constraints and adaptive expectations of agents. Fourth, we contribute to overcoming economic and institutional barriers through identifying win-win strategies, sustainable business models and enabling environments in three action fields of coastal zone flood risk management, urban transformations and energy poverty eradication and resilience. We embed all these activities within a sustained international dialogue involving stakeholders from policy, research, civil society and the private sector, and an open knowledge management and capacity building strategy to promote knowledge transfer and learning beyond the project lifespan.


Grant
Agency: GTR | Branch: Innovate UK | Program: | Phase: Collaborative Research & Development | Award Amount: 484.27K | Year: 2015

Bio-Bean (BB) currently has contracts with coffee producers to receive their waste coffee grounds (WCG), diverting it from landfill and processing it into biomass pellets. High value coffee oil is imported and used in the UK for fragrance, flavouring, pharmaceutical and cosmetic applications. Coffee oil is currently extracted from virgin beans, an expensive and wasteful process as the beans are subsequently discarded. BB’s strategic aim is to step change their business by adding a high value material (coffee oil) extraction stage to their process. This extraction process has already been proven at lab-scale. This project, with partners from the whole supply chain, will recover high value coffee oil from WCG and create a new disruptive market for natural coffee oil, manufactured in the UK from UK waste.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: ICT-14-2014 | Award Amount: 10.00M | Year: 2015

The goal of the 5G Exchange (5GEx) project is to enable cross-domain orchestration of services over multiple administrations or over multi-domain single administrations. This will allow end-to-end network and service elements to mix in multi-vendor, heterogeneous technology and resource environments. Market fragmentation has resulted in a multitude of network operators each focused on different countries and regions. This makes it difficult to create infrastructure services spanning multiple countries, such as virtual connectivity or compute resources, as no single operator has a footprint everywhere. 5GEx aims to enable collaboration between operators, regarding 5G infrastructure services, with the view to introducing a unification via NFV/SDN compatible multi-domain orchestration by producing (i) an open platform enabling cross-domain orchestration of services over these multiple domains, with a set of open source software tools and extensions that can be utilised outside the scope of 5GEx; (ii) a Sandbox Network enabling experimentation and validation of the devised architecture, mechanisms, and business models; (iii) a proof-of-innovation multi-domain platform enabling multiple 5G use-cases and realistic scenarios that demonstrate the orchestration of complex end-to-end Infrastructure as a Service across multiple carriers; (iv) contributions to standards bodies of concepts learned during the development and experimentation of the project; (v) input to stimulate the telecom and IT industry stakeholders by actively promoting adoption of 5GExs open solutions. Such 5G infrastructure services will provide a crucial role in making 5G happen as they provide the foundation of all cloud and networking services. 5GEx aims to enable, through operator collaboration, a unified European infrastructure service market integrating multiple operators and technologies, where service provisioning is fast and automated and which results in stronger economy via economies of scale.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SC1-PM-09-2016 | Award Amount: 6.00M | Year: 2017

Liver cirrhosis is a very common chronic disease and one of the leading causes of death in European. Moreover, cirrhosis has a marked impact in patients quality of life and represents a major burden for health systems. Treatment of cirrhosis is currently based on symptomatic management of complications and has not changed substantially in the last 20 years. There is an unmet need for therapies that target the pathobiology of cirrhosis. The objective of LIVERHOPE project is to evaluate a novel therapeutic strategy for patients with cirrhosis based on a combination of rifaximin and simvastatin, targeting the main pathophysiological mechanisms of disease progression , namely the impairment in the gut-liver axis and the persistent hepatic and systemic inflammatory response. This dual therapeutic approach is supported by preclinical data showing excellent and very promising results. We will perform two randomized double-blind trials to investigate safety, tolerability and efficacy of combination of simvastatin plus rifaximin in patients with decompensated cirrhosis in 5 EU countries (285 patients will be enrolled in two trials in DE, ES, FR, IT, UK). The expected impact is to halt progression to acute-on-chronic liver failure, the main cause of death, to decrease complications of the disease, to reduce hospital readmissions, to improve cost-effectiveness of therapy. Our final aim is to improve patients quality-of-life and increase survival as patients care is the core of LIVERHOPE. Within the project we will also investigate biomarkers of response to treatment and disease progression that can be useful in clinical practice for improving the treatment of patients. We will invest our effort also in communication and dissemination activities for increasing awareness about chronic liver diseases in European countries so that preventive measures can be established to decrease the burden of cirrhosis and reduce social stigmatization of patients with chronic liver diseases.


Cochat P.,University Claude Bernard Lyon 1 | Rumsby G.,University College London
New England Journal of Medicine | Year: 2013

Primary hyperoxaluria should be considered in any patient with a history of recurrent calcium oxalate stones, nephrocalcinosis, or both (Table 2). Once the diagnosis has been confirmed by genetic testing, aggressive supportive treatment is indicated, followed by an appropriate organ-transplantation strategy if renal function is declining. Future therapeutic developments are aimed at correcting the underlying defects without exposing patients to the lifelong risks associated with organ transplantation. Copyright © 2013 Massachusetts Medical Society.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: INFRADEV-3-2015 | Award Amount: 4.95M | Year: 2015

BBMRI-ERIC: the Biobanking and BioMolecular resources Research Infrastructure - European Research Infrastructure Consortium, aims to establish, operate and develop a Pan-European distributed research infrastructure in order to facilitate the access to biological resources as well as facilities and to support high quality biomolecular and biomedical research. The ADOPT BBMRI-ERIC proposal aims at boosting and accelerating implementation of BBMRI-ERIC and its services. Its main deliverables are designed to complete or launch the construction of key Common Services of the Research Infrastructure as required for ESFRI-projects under implementation, reflecting the targets of the European Research Area (ERA). One of the challenges in the post-genomic era is the research on common complex diseases, such as cancer, diabetes and Alzheimers disease. Revealing these diseases will depend critically on the study of human biological samples and data from large numbers of patients and healthy individuals. The EUs ageing population is will result in an increase in many of those diseases and consequently an increased healthcare expenditure for senior citizens. BBMRI-ERIC is a specific European asset having become a fundamental component in addressing the ongoing and future requirements particularly of Europes health service frameworks, including competitiveness and innovativeness of health-related industries. Its implementation is essential for the understanding of the diversity of human diseases, biological samples and corresponding data, which are required for the development of any new drug or diagnostic assay and are, therefore, critical for the advancement in health research, ultimately leading to personalised medicine. BBMRI-ERIC will provide a gateway access to the collections of the European research community, expertise and services building on the outcome of ADOPT BBMRI-ERIC.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: INFRAINNOV-02-2016 | Award Amount: 1.99M | Year: 2017

A scientific and technological paradigm change is taking place, concerning the way that very high performance time and frequency reference signals are distributed, moving from radio signal broadcasting to signal transport over optical fibre networks. The latter technology demonstrates performance improvements by orders of magnitude, over distances up to continental scale. Research infrastructures are developing several related technologies, adapted to specific projects and applications. The present project aims to prepare the transfer of this new generation of technology to industry and to strengthen the coordination between research infrastructures and the research and education telecommunication networks, in order to prepare the deployment of this technology to create a sustainable, pan-European network, providing high-performance clock services to European research infrastructures. Further this core network will be designed to be compatible with a global European vision of time and frequency distribution over telecommunication networks, enabling it to provide support to a multitude of lower-performance time services, responding to the rapidly growing needs created by developments such as cloud computing, Internet of Things and Industry 4.0. The project aims at partnership building and innovation for high performance time and frequency (clock) services over optical fibre networks and to prepare the implementation of such a European backbone network.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-29-2016 | Award Amount: 3.82M | Year: 2016

SOLUS is a trans-disciplinary 48-month project bringing together 9 partners: industries (4), academic and clinical institutions from 5 countries (engineers, physicists and radiologists) representing cutting-edge expertise in their fields, to develop an innovative non-invasive, point-of-care, low-cost, easy-to-operate, multi-modal imaging system (diffuse optics and ultrasounds/shear wave elastography) for high-specificity diagnosis of breast cancer, the most common female cancer in Europe. Mammographic screening is effective in reducing mortality, however the 10-year cumulative false-positive risk is 50-60%, leading to needless additional invasive procedures (e.g. biopsy). The project addresses the unmet clinical need for higher specificity in breast cancer imaging following screening by fully combining photonics with non-photonics techniques, developing and clinically validating innovative and previously unthinkable photonics concepts and components: time-domain small source-detector distance optical tomography, miniaturized picosecond pulsed laser sources, high-dynamic-range time-gated single-photons detectors to achieve unprecedented sensitivity and depth penetration. For the first time, this allows a comprehensive quantitative characterization of breast tissue including composition (water, lipids, collagen), functional blood parameters, morphologic information and mechanical parameters (stiffness). This innovative multi-parametric characterization will significantly improve the specificity of breast screening, with great impact on the quality of life of millions of European women every year, and huge savings for the healthcare systems. The strong involvement of leading industrial players at all levels in the value chain will push the European innovation process and make a significant contribution to ensuring Europes industrial leadership in the biophotonics healthcare market, while addressing one of the largest societal challenges in health and well-being.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SC5-06-2016-2017 | Award Amount: 2.99M | Year: 2016

The COP21 outcome represents an important new strategic context for EU climate policy. Analysing the implications of this new context requires an interdisciplinary approach, combining analysis of the evolution of the international climate regime as well as of NDCs and their socio-economic implications. Such analysis is also urgent, given the timelines imposed by the Paris Agreement for a facilitative dialogue in 2018 with a view to creating the conditions for the revision of NDC in 2020. In order to address the context described above, this project has four objectives : 1) Assess the adequacy of the NDCs submitted at COP21 in light of the global temperature target of limiting warming to 2C/1.5C. Through the analysis of GHG scenarios and energy system scenarios , the project will pay particular attention to the concrete system changes induced by NDCs, and compare them with the changes required to meet the global temperature limit. The project will also analyse scenarios limiting warming to 1.5C, and the impact of NDCs on other sectors, in particular land-use. 2) Assess the implications of NDCs and deeper mitigation pathways on other European socio-economic objectives. By integrating GHG and energy system scenarios into a range of different macro-economic, global energy system models and other quantified methodologies, the project will investigate implications for European socio-economic objectives related to innovation and technology deployment; trade and competiveness; investment, financial flows and economic growth (green growth); and global energy markets and energy security. 3. Assess the adequacy of the outcomes of COP21, and the implications and opportunities emerging from ongoing UNFCCC negotiations. The project will undertake a social sciences-based (in particular international law and international relations) assessment of the outcome of COP21. 4) Policy recommendations for EU climate policy and climate diplomacy.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: SC5-13e-2015 | Award Amount: 2.01M | Year: 2015

Primary and secondary raw materials are fundamental to Europes economy and growth. They represent the most important link in the value chain of industrial goods production, which plays a prominent role as a source of prosperity in Europe. However, as stated in the call, there exists to-date no raw materials knowledge infrastructure at EU level. The Mineral Intelligence Capacity Analysis (MICA) project contributes to on-going efforts towards the establishment of such an infrastructure by projects such as ProMine, EURare, Minventory, EuroGeoSource, Minerals4EU, ProSum, I2Mine, INTRAW, MINATURA2020 and others. The main objectives of MICA are: - Identification and definition of stakeholder groups and their raw material intelligence (RMI) requirements, - Consolidation of relevant data on primary and secondary raw materials, - Determination of appropriate methods and tools to satisfy stakeholder RMI requirements, - Investigation of (RMI-) options for European mineral policy development, - Development of the EU-Raw Materials Intelligence Capacity Platform (EU-RMICP) integrating information on data and methods/tools with user interface capable of answering stakeholder questions, - Linking the derived intelligence to the European Union Raw Materials Knowledge Base developed by the Minerals4EU project. The MICA project brings together a multidisciplinary team of experts from natural and technical sciences, social sciences including political sciences, and information science and technology to ensure that raw material intelligence is collected, collated, stored and made accessible in the most useful way corresponding to stakeholder needs. Furthermore, the MICA project integrates a group of 15 European geological surveys that contribute to the work program as third parties. They have specific roles in the fulfilment of tasks and will provide feedback to the project from the diverse range of backgrounds that characterizes the European geoscience community.


The purpose of the project INSERT is to provide clinically relevant stratification and improved personalized radio-chemo therapy for brain tumour patients using a specifically developed multi-modality imaging tool. The system will also be used for early assessment of treatment efficacy. The initial focus will be on patients with glioma but there is future potential to target a range of tumours in the head and neck region. The proposed system is based on the development of a novel SPECT (Single Photon Emission Computed Tomography) system, suitable for insertion in the bore of an existing MRI (Magnetic Resonance Imaging) system, a cost-effective solution for widespread application. The combined system will allow the simultaneous measurement of anatomical (MRI) and functional (SPECT & MRI) information and the evaluation of their correlation in space and time. The SPECT design will enable acquisition of fast dynamic studies, with possibility for simultaneous measurement using multiple radionuclides (emitting at different energies), a distinct advantage compared to positron emission tomography (PET). This property can allow in-vivo simultaneous visualisation of spectrally resolved molecular and biochemical tumour properties. The stationary SPECT system is based on recently developed innovative gamma-ray detectors made with Silicon Drift Photodetectors, technology that achieves high-spatial resolution and is compatible with MRI thanks to the use of a silicon photodetector instead of photomultiplier tubes. The multi-modality SPECT/MRI imaging here proposed will apply a fully translational, vertical integration of research and development from technology design through preclinical models to clinical validation.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: KBBE.2013.2.1-01 | Award Amount: 11.45M | Year: 2014

MooDFOOD is a Multi-country cOllaborative project on the rOle of Diet, Food-related behaviour, and Obesity in the prevention of Depression. Depression is one of the most prevalent, severe and disabling disorders in the EU and places a heavy burden on individuals and families. A large proportion of the EU population is overweight which increases depression risk. Improving food-related behaviour and nutrient status offer opportunities to prevent depression, specifically for people prone to being overweight. The MooDFOOD consortium combines expertise in nutrition, consumer behaviour, psychiatry and preventive psychology and uses a unique integrative approach. Existing high quality data of longitudinal prospective European cohort studies will be combined with new data from surveys, short-term experiments and a long-term preventive intervention study. This approach will provide insight in the causality of the link between diet and depression and underlying pathways, and will identify which modifications related to depression lead to beneficial dietary changes and lower the environmental burden of the diet. Knowledge on all these aspects will be integrated and used to develop novel nutritional strategies to prevent depression. The MooDFOOD consortium aims 1) to gain a better understanding of the psychological, lifestyle and environmental pathways underlying the multi-faceted, bidirectional links of food intake, nutrient status, food-related behaviour and obesity with depression and 2) to develop and disseminate innovative evidence-based, feasible, effective and sustainable nutritional strategies for the prevention of clinical depression. In close collaboration with stakeholders and experts MooDFOOD will transform these nutritional strategies into guidelines and practical tools to guide policy at EU- and Member State levels. Promotion through extensive European networks will lower the risk of depression and contribute to overall health of all EU citizens.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 2.27M | Year: 2014

This proposal seeks funding to acquire a stepper and associated wafer coater, tools to enable photolithographic patterning of semiconductor wafers for device and circuit fabrication. The stepper will be located at Southampton University in the recent £120m cleanroom complex. It will relieve the bottleneck within the cleanroom, an electron beam lithography tool, which is a slower alternative patterning tool. This will increase capacity within the cleanroom complex and facilitate and underpin a wealth of world class research. Not only will research at Southampton be enhanced, but Southampton (SOU), Glasgow (GLA), and Surrey (SUR) universities will pool resources to establish a Silicon Photonics Fabrication Capability within the UK, to facilitate an increasing demand for the fabrication of Silicon Photonics devices from the UKs premier researchers. This will encourage wider usage of world class equipment within the UK, in line with EPSRC policy. We seek funding for both the equipment and 3.5 RAs across the 3 institutions, over a 4 year period, to establish and deliver the Capability. Access to a very significant inventory of additional equipment at these 3 universities will be facilitated. The Capability is extremely timely, as silicon foundry services around the world are moving towards a model in which standard platforms and devices will be offered, making it more difficult for researchers to carry out innovative work at the device level, or in non-standard platforms. The proposal is supported by 36 members of academic staff at Southampton, with a total current research portfolio of projects valued in excess of £88m. Furthermore we have 10 project partners who will take part in the use and assessment of the silicon photonics capability by designing and subsequently testing fabricated devices. Their total in-kind contribution is valued at £793,300. These partners have expressed an interest in using the capability after the project has been completed. In addition have contacted a few example potential users from within the industrial sector (SMEs), and from around the world who have also provided letters of support indicating that they would use the capability after the project is complete. Taking this net proposed usage, it is clear that the equipment will be sustained beyond the period of the funded project. The Southampton users alone need only generate a tiny fraction (0.2%) of their research portfolio to cover running costs and depreciation. Consumables will increase with usage, but clearly, the silicon photonics capability will generate paying users, to further sustain the capability beyond the project, which will, in turn, allow UK researchers to compete effectively on the world stage in the buoyant field of silicon photonics. Beyond the 4 year project, the Silicon Photonics Capability will be operated by the commercial arms of the 3 partner universities, all of whom have provided letters of support confirming their ongoing participation.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: ISSI-1-2015 | Award Amount: 3.94M | Year: 2016

Our project, Doing-It-Together Science, DITOs, represents a step change in European public engagement with science and innovation. We propose moving from a model in which scientific research, innovation, and problem-solving is mainly driven by scientific/professional institutions to one based on active public participation and capacity building with various levels and strategies of engagement in the scientific process. At the core of our ethos is a recognition of peoples existing expertise and the different ways people want to and do engage in science and technology. The project is aimed at elevating public engagement with science across Europe from passive engagement with the process of developing science to an active one. Citizen Science and Do It Yourself (DIY) scientific efforts demonstrate that this is possible, and our aim is to ensure that the European Research Area will become leader in deep public engagement that is afforded by these advances. As a Coordination and Support Action, this project will support and build upon DIY, grassroots, and frugal innovation initiatives so that in the short and medium term we sustain localised capacity building and in the long term the effects of these grassroots efforts channel to policy makers at different levels, from external advice to societal inputs, regarding appropriate research and innovation policies. The proposal includes the participation of policy bodies (European Citizen Science Association, DE), SMEs (Tekiu, UK; Eutema, AT), Universities (University College London, UK; Universite Paris Descartes, FR; University of Genve, CH), Science galleries and public spaces (Royal Belgian Institute of Natural Sciences, BE; Medialab-Prado, E; Kersnikova Institution, SL) and NGOs (Meritum Association, PL; Waag Society, NL).


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: LCE-21-2015 | Award Amount: 4.00M | Year: 2016

REEEM aims to gain a clear and comprehensive understanding of the system-wide implications of energy strategies in support of transitions to a competitive low-carbon EU society. Comprehensive technology impact assessments will target the full integration from demand to supply and from the individual to the entire system. It will further address its trade-offs across society, environment and economy along the whole transition pathway. The strong integration of stakeholder involvement will be a key aspect of the proposal. The assessments performed within REEEM will focus on integrated pathways, which will be clustered and categorised around two focal points: the four integrated challenges of the Integrated Roadmap of the Strategic Energy Technology (SET)-Plan and the five dimensions of the Energy Union. Case studies will further serve to investigate details and highlight issues that cannot be resolved at a European level. A range of outputs will target the specific needs of various stakeholder groups and serve to broaden the knowledge base. These include, among others, Policy Briefs, Integrated Impact Reports, Case Study reports and Focus Reports on economy, society and environment. A focus on technology research, development and innovation will be included through the development of Technology Roadmaps with assessments of the Innovation Readiness Level of technologies. Further, a set of enabling tools will help to disseminate and actively engage stakeholders, including a Stakeholder Interaction Portal, a Pathways Diagnostic Tool and an Energy System Learning Simulation. Access to all work developed and transparency in the process will be guiding principles within this project exhibited by, for example, providing open access to a Pathways Database.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-20-2015 | Award Amount: 3.90M | Year: 2016

Autism Spectrum Conditions (ASC, frequently defined as ASD - Autism Spectrum Disorders) are neurodevelopmental conditions, characterized by social communication difficulties and restricted and repetitive behaviour patterns. There are over 5 million people with autism in Europe around 1 in every 100 people, affecting lives of over 20 million people each day. Alongside their difficulties, individuals with ASC tend to have intact and sometimes superior abilities to comprehend and manipulate closed, rule-based, predictable systems, such as robot-based technology. Over the last couple of years, this has led to several attempts to teach emotion recognition and expression to individuals with ASC, using humanoid robots. This has been shown to be very effective as an integral part of the psychoeducational therapy for children with ASC. The main reason for this is that humanoid robots are perceived by children with autism as being more predictable, less complicated, less threatening, and more comfortable to communicate with than humans, with all their complex and frightening subtleties and nuances. The proposed project aims to create and evaluate the effectiveness of such a robot-based technology, directed for children with ASC. This technology will enable to realise robust, context-sensitive (such as user- and culture-specific), multimodal (including facial, bodily, vocal and verbal cues) and naturalistic human-robot interaction (HRI) aimed at enhancing the social imagination skills of children with autism. The proposed will include the design of effective and user-adaptable robot behaviours for the target user group, leading to more personalised and effective therapies than previously realised. Carers will be offered their own supportive environment, including professional information, reports of childs progress and use of the system and forums for parents and therapists.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2014-ETN | Award Amount: 3.26M | Year: 2015

The DISTRO network brings together leading laboratories in Visual Computing and 3D Computer Graphics research across Europe with the aim of training a new generation of scientists, technologists, and entrepreneurs that will move Europe into a leading role in the scientific and technological innovation in the area of casual, distributed 3d object design and customization. Whilst digital content has certainly grown, the worlds economy is still dominated by manufacturing. A new class of rapid prototyping technologies, from 3D printers to laser cutters, are making the process of manufacturing physical objects look increasingly like that of creating digital content. Just as the Web democratised digital innovation, the next ten years will see the application of these lessons to the real world. This new industrial revolution can only occur if it is as simple for real world objects to be captured, and modified as it is for music, text, and images. This is not yet the case, with most professional design software requiring a significant amount of time and investment to master. There is a real need for tools that are focused on making it simple for amateurs to create new products without experience or training expediting the path from idea to entrepreneurship. Our network proposes a timely and innovative research training programme for the distributed capture, editing, and fabrication of objects - from the real world to digital and back again. We want to enable users to casually capture objects, which can then be easily shared on the Web and customised in simple yet powerful ways. The research training programme will be conducted by our network, consisting of a mix of academic and private partners. Through collaborative research, secondments, and training events, we will educate a new generation of researchers that are able to solve complex research challenges but at the same time acquire transferrable skills.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2014-ETN | Award Amount: 3.65M | Year: 2015

Photonics will play a major, enabling role in the future of ICT and healthcare. However, to fulfill its potential and deliver on its promises, photonics will heavily rely on novel and more performing materials, that can be manufactured cheaply for the specific requirements of photonic applications. To lead this photonics revolution and rip the societal benefits of being at the leading-edge of novel technological and scientific developments, the EC needs a highly-skilled scientific and technical workforce that can effectively implement the transition to a truly knowledge-based society. SYNCHRONICS mission is to synergistically address both needs by training a pool of future science-leaders in the synthesis, characterisation and application to photonics of supramolecularly-engineered functional materials within state-of the-art photonic nanostructures fabricated thanks to the top-quality facilities and unique expertise available within the network. This kind of research requires an inter-multidisciplinary, intersectorial approach by specialized and skilled scientists from different disciplines, each one bringing a particular expertise: organic and supramolecular synthesis (UNI-OX,UNI-W, SURFLAY), theory (UNI-GE, IBM, UNI-GE), surface studies (UdS, UCL), photophysics (IIT, IBM, UCL, UNI-GE,UNI-CY, UNI-MO), device fabrication and characterisation (IBM, AMO, SURFLAY, UCL, IIT, UNI-PI, UNI-GE). The SYNCHRONIX Network, through the trans-national and trans-disciplinary coordination and integration of these 12, highly specialised and internationally-leading teams, consolidates the European training efforts in the emerging area of both supramolecular nanoscience and nanophotonics. SYNCHRONICS will deliver 540 person-months of unparalleled multidisciplinary and intersectorial training that is carefully and intensively structured through local, network wide, and extra-network training in both scientific/technical topics, as well as complementary and managerial skills.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: LCE-01-2014 | Award Amount: 4.44M | Year: 2015

The key to the efficient transmission and conversion of low-carbon electrical energy is the improvement of power electronic devices. Diamond is considered to be the ultimate wide bandgap semiconductor material for applications in high power electronics due to its exceptional thermal and electronic properties. Two recent developments - the emergence of commercially available electronic grade single crystals and a scientific breakthrough in creating a MOS channel in diamond technology, have now opened new opportunities for the fabrication and commercialisation of diamond power transistors. These will result in substantial improvements in the performance of power electronic systems by offering higher blocking voltages, improved efficiency and reliability, as well as reduced thermal requirements thus opening the door to more efficient green electronic systems. These improvements are expected to increase the efficiency of power converters by a factor of 4, yielding a 75% reduction in losses. In this context, the objective of GreenDiamond is to fabricate a 10kV transistor in a high power package, followed by a high voltage AC/DC converter based on such devices. To meet GreenDiamonds challenging goals, the consortium gathers experts on power device design, diamond growth and characterization, packaging and testing as well as an innovative end-user. Most of the partners are also involved in SiC or GaN technology, allowing the project to benefit from their ample experience and achievements in wide bandgap semiconductors. As far as diamond transistor structure is concerned, unlike GaN and SiC, Europe still has a significant scientific and technological advantage over non-EU competitors. It is therefore extremely important to maintain the competitive edge that will lead the development of truly green electronics in the near to medium term future.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2014-ETN | Award Amount: 3.70M | Year: 2015

VPH-CaSE is focused on state-of-the-art developments in personalised cardiovascular support, underpinned by simulation and experimentation, building on the foundations of the Virtual Physiological Human (VPH) Initiative. The Individual Research Projects of 14 ESRs provide knowledge exchange across three research clusters (i) Cardiac tissue function and cardiac support (ii) Cardiovascular haemodynamics - pathology and intervention (iii) Image-based diagnosis and imaging quality assurance. The work will be directed by the needs of industrial and clinical Beneficiaries and Partners, providing a truly multi-disciplinary, multi-sectoral environment for the ESRs. This will combine the expertise of nine core Beneficiaries (5 academic, 4 industrial) and 10 Partners (5 clinical, 4 industrial, 1 academic) to provide scientific support, secondments and training. VPH-CaSE will foster the development of ESRs within a collaborative environment. The recruited researchers will find themselves in an enviable position to leverage the expertise of a strategic sector of the European medical devices/simulation industry and engage with the issues faced by clinical experts in the domain of cardiac medicine and cardiovascular support. Their postgraduate studies will be informed by a translational bias that delivers a competitive skill-set, equipping them to address the challenges presented by a career at the cutting edge of technological innovation in healthcare delivery. The inclusion of a technology translation SME within the consortium is designed to promote the delivery of novel, tangible research outputs, providing benefits to a breadth of European sectors (eg. biomedical, clinical, VPH). The ultimate vision is the production of VPH-capable scientists with experience of tight integration of academic/industrial/clinical areas, able to apply their skills to real life scenarios, accelerating the acceptance of innovative and effective healthcare in the clinic.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-23-2014 | Award Amount: 6.93M | Year: 2015

The subject of this proposal is a robot assistant that is trained to understand maintenance tasks so that it can either pro-actively or as a result of prompting, offer assistance to maintenance technicians performing routine and preventative maintenance. Conceptually the robots task is to provide a second pair of hands to the maintenance engineer, such that once the robot has been trained it can predict when and how it can usefully provide help. The robots behavioural repertoire is learnt in a training phase that includes the monitoring of maintenance technician activity, the construction of a knowledge base that describes the context of a task, and a theory of action that enables dynamic behaviour generation. The result is a set of competencies coupled with an ability to recognise the state of a task and an understanding of how these competencies can be usefully deployed given the state. The scope of work includes the construction of a robot assistant, the systems that facilitate the training, the actual training on a number of representative tasks, perceptual systems that facilitate activity recognition, and validation of the systems ability to usefully contribute to tasks in collaboration with a maintenance engineer. Assessment of the system will test its ability to recognise when it doesnt know something as well as its ability to generalise its knowledge to previously unseen tasks.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.2.4.1-2 | Award Amount: 7.78M | Year: 2013

T-cell engineering strategies for Cancer therapy, either Chimeric Antigen Receptors (CARs) or TCR transfer holds promise to revolutionize cancer treatment. There are, however, considerable barriers to be overcome to take this form of therapy to a format that can benefit all EU citizens with a wide range of common cancers. The aim of this consortium is to exploit advances in T-cell engineering to allow the full potential of CAR therapy to be unleashed. At present, CAR therapy requires a bespoke autologous therapeutic product for each patient. This greatly limits practicality, scalability and commercialisation. The development of a strategy for creation of universal engineered T-cells is the first key aim of this consortium. There is an increased appreciation of the immunological hostilities (CAR) T-cells face in the tumour microenvironment, and prevention of this local immune suppressive effect will likely be critical in permitting effective tumour control. The second main aim of this proposal is therefore to engineer CAR T-cells to be resistant to the hostile microenvironment. CAR T-cells can only be effective if they can access the tumour site. Exploiting the fact that neo-angiogenesis is a hallmark of neoplastic progression, the third aim of the consortium is to utilise endothelial cues of neo-angiogenesis to direct CAR T-cell migration and activity. The central technological theme of this consortium is the application of TALEN-mediated gene editing strategies alongside genetic modification with integrating vectors. Using this approach, we will implement a clinical study of universal CAR T-cells in refractory lymphoma. Further, this work will be complemented with highly focused development of T-cells which are resistant to hostile microenvironments and which can home to sites of neovascularization. The legacy this consortium wishes is commercialization of universal CAR therapy for a broad swathe of human cancers.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-22-2014 | Award Amount: 3.92M | Year: 2015

The eNHANCE project key objective is to symbiotically mechanically support and motivate people with motor impairments resulting from muscular or neural degeneration (e.g. stroke) to perform complex daily life tasks. Our system aims to assist the user in performing their daily-life interaction with the environment through an intelligent multi-modal adaptive interface controlled by a high performance intention detection input interface and a personalised behavioural model. The eNHANCE active support orthotics enables the users to achieve their desired movement actions, while motivating the users to maximize their own force contribution. This will maximize user performance relative to their personal capacity, and so maximize therapeutic effects. This requires a personalized mechanical support system taking into account personal behaviour in response to arm and hand support characteristics, supplementary motivational inputs provided by the system and context. Our personalized behaviour model will be constantly predicting user performance. This model is adaptively identified based on the discrepancy between observed and predicted user performance. The eNHANCE consortium provides a unique combination of European companies, knowledge and clinical institutes required to tackle this challenge. The expertise covers such diverse fields as body-mounted sensing, high-performance intention detection, machine intelligence, behavioral monitoring and modeling, dexterous mechatronic arm and handfunction support, intelligent and user-enabling daily-life care, and economical and clinical exploitation of such new approaches. The research and innovation will be driven by clinical user and industrial requirements identification and is finalized by clinical validation and industrial prototype realization and demonstration.


Chronic angina pectoris is a debilitating chronic disease, a subgroup of these patients suffers from refractory angina which unfortunately cant be controlled by medical therapy (angioplasty or surgery). Refractory angina is a substantial burden on the individual and healthcare system, in Europe there are 100,000 new cases per year, annual mortality of these patients is relatively low (<4%) thus refractory angina patients suffer multiple hospitalizations and low levels of health-related quality of life. The ReGenHeart project is based on extensive preclinical work and a phase I safety, feasibility and dose-finding clinical study recently completed by the consortium. The project will conduct a multicentre, randomized, placebo-controlled, double-blinded Phase II clinical study to provide proof of concept and clinical validation for a new, percutaneous, cost-efficient therapy for refractory angina patients. Using our optimized catheter-mediated intramyocardial approach with AdenoVEGF-D, which has never been used in man before our phase I trial, we aim to induce regenerative changes supported by therapeutic angiogenesis in the affected area of a patients heart and, in a single procedure, reduce the burden on the individual and their health service. The proposed trial is ready to proceed, subject to final regulatory approval in the six European clinical centres. 180 CCS class 2-3 refractory angina patients will be recruited, which will allow us to assess the benefits of therapy to patients who still have potential to respond to the regenerative therapy. Patients will be randomized 2:1 to either the gene therapy or placebo arms. Trial follow up, at 6 and 12 months, will assess how far they can walk in 6 minutes (primary endpoint) and also by their CCS angina score, quality of life, so-called MACE endpoints and several advanced PET and MRI imaging endpoints.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SC1-PM-22-2016 | Award Amount: 6.92M | Year: 2016

ZIKAction proposes to set up a multidisciplinary research network across Latin America with a focus on maternal and child health to coordinate and implement urgent research against the current ZIKV outbreak and lay the foundation for a preparedness research network against future emerging severe infectious threats in these vulnerable populations. Our Consortium brings together Latin American and European leaders in paediatric infectious disease research, including virologists, epidemiologists, immunologists and obstetric, neonatal and paediatric practitioners, all with a wealth of experience in vertical transmission (VT) studies, a group uniquely placed to evaluate the potentially causative relationship between ZIKV and severe reported complications. ZIKAction will collect data from prospective cohorts of pregnant women and infants to assess ZIKV complications with the necessary level of evidence which is currently lacking. Complementary work in virology will take advantage of repeated biological samples from these cohorts, while pathogenesis studies on animal models will elucidate risk factors and mechanisms of VT. Partners experience in conducting trials among pregnant women and children and close contact with other relevant researchers will allow rapid launch of additional interventional studies, including the addition of sites and partners, to address remaining research gaps against ZIKV. Recognizing the breadth and complexity of the research questions presented by the current ZIKV epidemic and the potential for future severe emerging infectious threats, ZIKAction will actively seek out collaborations with relevant initiatives already existing or under development to maximize synergy and avoid duplication of efforts. Our focus on vertical transmission and maternal and child health would nicely complement a range of other activities including clinical and laboratory studies in the general population, surveillance, and work in public health and prevention.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: DS-01-2014 | Award Amount: 4.54M | Year: 2015

The objective of the PANORAMIX project is the development of a multipurpose infrastructure for privacy-preserving communications based on mix-networks (mix-nets) and its integration into high-value applications that can be exploited by European businesses. Mix-nets protect not only the content of communications from third parties, but also obscure the exact identity of the senders or receivers of messages, through the use of cryptographic relays. Mix-nets are absolutely necessary for implementing strong privacy-preserving systems and protocols. This project directly aims to realize, integrate and demonstrate the use of a European infrastructure for mix-nets in the context of three diverse high-value applications that have clear, measurable, realistic, and achievable objectives. Our objectives are as follows. (Objective 1): Building a Mix-Net Infrastructure for Europe, by creating a European mix-network open-source codebase and infrastructure, (Objective 2): apply our infrastructure to private electronic voting protocols, where anonymity is necessary to guarantee ballot secrecy, and verifiability is needed for holding fair, transparent and trustworthy elections; (Objective 3): apply our infrastructure to privacy-aware cloud data-handling, in the context of privacy-friendly surveying, statistics and big data gathering protocols, where protecting the identity of the surveyed users is necessary to elicit truthful answers and incentivize participation; (Objective 4): apply our infrastructure to privacy-preserving messaging, where two or more users may communicate privately without third parties being able to track what is said or who-is-talking-to-whom. PANORAMIX facilitates a genuine collaboration between academia, civil society and industry bringing together a team of researchers from academia with a proven track record on privacy technologies and industry in domains where privacy technologies can have a very high impact.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: HEALTH.2013.2.2.1-4 | Award Amount: 15.40M | Year: 2013

Epilepsy is a major burden for patients and health systems worldwide. It is a common chronic neurological disorder affecting people of all ages, and the shortfall in existing treatments means that 30% of patients continue to suffer uncontrolled seizures. MicroRNAs (miRNA) are a recently-discovered, network-level layer of gene expression regulation that controls protein levels of entire signaling pathways. Research on miRNAs has unprecedented potential to (i) further our understanding of the underlying disease processes, (ii) deliver novel signatures and prognostic markers for response to therapy, and (iii) deliver novel therapeutics and drug targets. EpiMiRNA consortium members have pioneered discoveries on brain-specific miRNAs, established that miRNA changes are a feature of the pathophysiology of human temporal lobe epilepsy and have demonstrated experimentally that altering miRNA function can potently suppress epileptic seizures and seizure-damage. EpiMiRNA brings together experts on the neurobiology of miRNAs with the leading researchers working on miRNAs in epilepsy, epilepsy geneticists, leaders in miRNA-target detection, proteomics, and systems biology with research-intensive SMEs pursuing miRNA therapeutics and treatments for pharmacoresistant epilepsy. Through highly collaborative, inter-disciplinary and inter-sectorial research, EpiMiRNA will explain the mechanism by which miRNAs contribute to epileptogenesis, characterize genetic variation of miRNA in patients, evaluate seizure-suppressing effects of miRNAs in experimental models, identify novel miRNA modulatory molecules as potential future therapeutics, and develop miRNAs as prognostic markers to identify patients who respond to novel, non-pharmacological therapeutic interventions including brain stimulation. EpiMiRNA will generate the necessary critical mass in biomedical, clinical and industry/SME research to track, treat and prevent seizures and improve the clinical management of epilepsy patients.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.35M | Year: 2015

ENLIGHT-TEN is a European Network Linking Informatics and Genomics of Helper T cells: our mission is to provide cross-disciplinary training in cellular immunology and big data analysis such that we train a new generation of researchers to fully exploit the power of emerging technological platforms. Our network of TEN beneficiaries combines T cell expertise with state-of-the-art technologies such as next generation sequencing (NGS), bioinformatics, multi-colour flow cytometry, preclinical models and tailored genome editing. Trainees will acquire a comprehensive knowledge in T cell immunology and the capacity to generate and interrogate big data sets as well as expertise in identifying novel biomarkers and developing therapeutic concepts. As such the training programme will provide an ideal stepping-stone for creative and innovative early stage researchers (ESRs) to enter and strengthen Europes academia as well as pharmaceutical and bioinformatics companies. The research focus of the network lies in the identification of extrinsic and intrinsic factors that control development, differentiation and plasticity of helper T cell subsets with particular emphasis on how T cell differentiation impacts on human diseases. The generation of large data sets is an emerging and challenging field, and there is high demand in both the academic sector as well as pharmaceutical companies for researchers to be able to analyse, integrate and exploit this rich source of information. ENLIGHT-TEN will combine the individual strengths of innovative laboratories and enterprises from complementary disciplines to provide unique interdisciplinary training for 13 ESRs, placing them at the forefront of this emerging field. Trainees will be empowered to perform cutting-edge analysis of the steadily increasing number of different T cell subsets, which play highly diverse and critical roles in the development of autoimmune diseases, making them a key target for pharmaceutical companies.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.84M | Year: 2016

Our vision is to develop a suite of standardised non-invasive devices that will provide essential information about brain health in neurocritical care and neuromonitoring, with a particular emphasis on 1. traumatic brain injury: the silent epidemic of the third millennium and 2. hypoxia in newborn children. Survivors present permanent neurological conditions that have a profound impact on the quality of life of individuals and their families, and hence a large socio-economic impact. The key factors influencing these conditions and their treatment are the avoidance of brain hypoxia and metabolic disturbances and this is driving the transfer of new neuromonitoring systems to the bedside where they are being shown to have a transformative effect on patient care. BitMap will develop non-invasive photonics-based monitoring techniques and data analysis methods to provide biomarkers that could guide patient management. A cohort of multi-disciplinary Early Stage Researchers (ESRs), embedded in leading laboratories across Europe, will work together on an programme designed to address the key technological and clinical challenges in neurocritical care. The ESRs will benefit from the diverse range of expertise in advanced photonics and clinical application which will substantially enhance their research competitiveness and employability, and will together form a critical mass of skilled people working together towards new technologies for improved neuroclinical care. The challenges involved are fundamentally multi-disciplinary and therefore ESRs trained in a multi-disciplinary environment are essential if progress and clinical impact is to be made. There is currently no graduate programme producing researchers with these attributes, but there is a significant market for such PhDs in the rapidly developing area of biomedical optics and in general in medical imaging technology development. The BitMap project therefore addresses both a clinical and economic need.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENV.2012.6.1-2 | Award Amount: 7.43M | Year: 2013

Integrated assessment and energy-economy models have become central tools for informing long-term global and regional climate mitigation strategies. There is a large demand for improved representations of complex system interactions and thorough validation of model behaviour in order to increase user confidence in climate policy assessments. ADVANCE aims to respond to this demand by facilitating the development of a new generation of integrated assessment models. This will be achieved by substantial progress in key areas where model improvements are greatly needed: end use and energy service demand; representation of heterogeneity, behaviour, innovation and consumer choices; technical change and uncertainty; system integration, path dependencies and resource constraints; and economic impacts of mitigation policies. In the past, methodological innovations and improvements were hindered by the unavailability of suitable input data. The ADVANCE project will make a large and coordinated effort to generate relevant datasets. These datasets, along with newly developed methodologies, will be made available to the broader scientific community as open-access resources. ADVANCE will also put a focus on improved model transparency, model validation, and data handling. A central objective of ADVANCE is to evaluate and to improve the suitability of models for climate policy impact assessments. The improved models will be applied to an assessment of long-term EU climate policy in a global context, and disseminated to the wider community. The ADVANCE consortium brings together long-standing expertise in integrated assessment and energy-economy modelling with a strong expertise in material flows, energy system integration, and energy service demand.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-01-2014 | Award Amount: 5.92M | Year: 2015

The Gluco-Psychosocial Axis (GPA) concerns the interplay of factors determining glucose metabolism and insulin sensitivity and the neuroendocrine response resulting from exposure to psychosocial stress. A sub-optimal GPA influences the development of type 2 diabetes and related impairments with varying degrees of interplay between genetics and early growth (particularly adiposity and cognitive function), and social, occupational, and other modifiable lifestyle factors. Many exposures apply from throughout life, and potential exposure to a sub-optimal GPA lead to a cumulative risk of ill health and decreased economic prospects for the ageing. Understanding these factors, interactions and extent they contribute to the preservation of glucose homeostasis and psychosocial functioning is important for the development of preventive and therapeutic measures promoting healthy and active ageing. DynaHEALTH will contribute to implementing a dynamic model for early GPA risk identification and validation, allowing development of risk-based prevention tools and policies that will help to inform policy makers on the best periods to invest in cost-effective and sustainable healthcare strategies. DynaHEALTH comprises 13 partners from academic/private sectors and will leverage data from 21 birth cohorts and intervention studies, involving 1.5 million Europeans. By identifying biological and psychosocial determinants of the GPA and characterising metabolic and epigenetic factors, whilst quantifying the impact of exposure to an optimal lifelong GPA, DynaHEALTH will influence weight gain, glucose homeostasis, employability, health deterioration and disease accumulation as individuals age. DynaHEALTH includes the potential to exploit the results for new technologies and strategies, adding to our understanding of pathways related to healthy and active ageing, underpinning options for targeted, personalised healthcare and mitigating the effects of sub-optimal GPA on ageing.


The main objective of this research proposal is to identify and elaborate those characteristics of ENM that determine their biological hazard potential. This potential includes the ability of ENM to induce damage at the cellular, tissue, or organism levels by interacting with cellular structures leading to impairment of key cellular functions. These adverse effects may be mediated by ENM-induced alterations in gene expression and translation, but may involve also epigenetic transformation of genetic functions. We believe that it will be possible to create a set of biomarkers of ENM toxicity that are relevant in assessing and predicting the safety and toxicity of ENM across species. The ENM-organism interaction is complex and depends, not simply on the composition of ENM core, but particularly on its physico-chemical properties. In fact, important physico-chemical properties are largely governed by their surface properties. All of these factors determine the binding of different biomolecules on the surface of the ENM, the formation of a corona around the ENM core. Thus, any positive or negative biological effect of ENM in organisms may be dynamically modulated by the bio-molecule corona associated with or substituted into the ENM surface rather than the ENM on its own. The bio-molecule corona of seemingly identical ENM cores may undergo dynamic changes during their passage through different biological compartments; in other words, their biological effects are governed by this complex surface chemistry. We propose that understanding the fundamental characteristics of ENM underpinning their biological effects will provide a sound foundation with which to classify ENM according to their safety. Therefore, the overarching objective of this research is to provide a means to develop a safety classification of ENM based on an understanding of their interactions with living organisms at the molecular, cellular, and organism levels based on their material characteristics.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: EO-1-2014 | Award Amount: 3.32M | Year: 2015

The alarming rate of biodiversity loss and ecosystem transitions make it clear that new strategies are required to sustain functioning of the coupled ecological-societal system. Existing space data archives and data streams from the ESA Sentinels, offer unprecedented opportunities to provide rapid, high quality indicators necessary for informed management of key ecosystem services. Yet, it remains largely unclear how space and ground-based observations can be optimally integrated to generate products required by end user communities (Secretariat of the Convention on Biological Diversity, 2014). By fusing extensive expertise on optical and radar remote sensing, ground data on ecosystem state and function, big data scientists, and active participation of user groups, BACI will advance this integration. BACI will translate space data to new variables (not directly observable from space) that encode ecosystem functional properties and status metrics. This will empower concepts of essential biodiversity variables. Advanced machine learning methods will be employed to reveal new and fundamental relationships between space observations and ecosystem status. BACI will incorporate a wide range of original data and downstream data products specifically targeting needs for early-warning systems, including a novel Biosphere-Atmosphere Change Index. We will prioritize selected key European and African regions now undergoing massive societal-ecological transformations, offering perspective towards operational assessments. A formal attribution framework will disentangle climate-induced ecosystem changes and socioeconomic/ecological transformation processes. Overall, BACI will advance usage of European space data to monitor relevant vegetation traits, status, and ecosystem functioning. By capitalizing on existing datasets, we will prototype new algorithms to rapidly implement these metrics and thus space-to-ground integration of the new ESA Sentinels.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2011.5.2 | Award Amount: 13.91M | Year: 2013

Developing robust, reproducible, interoperable and collaborative hyper-models of diseases and normal physiology is a sine qua non necessity if rational, coherent and comprehensive exploitation of the invaluable information hidden within human multiscale biological data is envisaged. Responding to this imperative in the context of both the broad Virtual Physiological Human (VPH) initiative and the paradigmatic cancer domain, CHIC proposes the development of a suite of tools, services and secure infrastructure that will support accessibility and reusability of VPH mathematical and computational hypermodels. These will include a hypermodelling infrastructure consisting primarily of a hypermodelling editor and a hypermodelling execution environment, an infrastructure for semantic metadata management, a hypermodel repository, a hypermodel-driven clinical data repository, a distributed metadata repository and an in silico trial repository for the storage of executed simulation scenarios. Multiscale models and data will be semantically annotated using the ontological and annotating tools to be developed. An image processing and visualization toolkit, and cloud and virtualization services will also be developed. The CHIC tools, services, infrastructure and repositories will provide the community with a collaborative interface for exchanging knowledge and sharing work in an effective and standardized way. A number of open source features and tools will enhance usability and accessibility. In order to ensure clinical relevance and foster clinical acceptance of hypermodelling in the future, the whole endeavour will be driven by the clinical partners of the consortium. Cancer hypermodels to be collaboratively developed by the consortium cancer modellers will provide the framework and the testbed for the development of the CHIC technologies. Clinical adaptation and partial clinical validation of hypermodels and hypermodel oncosimulators will be undertaken.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.72M | Year: 2016

Thousands of sites across Europe are polluted with toxic metals and organic solvents; many more exist worldwide. As EU population grows, clean water will determine the quality of life and economic stability. Most sites remain contaminated because existing technology is costly and disruptive. Society needs an innovative way to decontaminate soil and groundwater directly underground. In METAL-AID, we will develop new technologies through fundamental knowledge. We are a consortium of experts in natural materials, contaminant reactivity, groundwater treatment and environment policy, spread over 4 consulting firms, 6 universities and a government agency. We will train 14 early stage researchers (ESRs) through integrated, intersectoral research, using advanced technology, ranging from nanometre to field scale. ESRs will gain technical, business and personal skills, as they push a promising soil and groundwater remediation technology toward commercialisation. To meet the METAL-AID goals, the ESRs will: 1) Test known layered double hydroxide (LDH) and redox active green rust (GR) reactants that show promise for remediating toxic metals and chlorinated compounds and invent new ones; 2) Derive thermodynamic and kinetic data, essential for safety assessment modelling; 3) Quantify reactant effectiveness and reacted phase stability and compare these with natural analogues; 4) Inject the new reactants at field sites operated by our beneficiaries. METAL-AID begins at technology readiness level, TRL 1 and runs to TRL 6, implementation. The government agency will provide guidance so our new technology complies with regulations and has promised R&D funding after the ETN ends, to carry it into full commercialisation. The ESRs will be trained to tackle challenges of concern to society, to communicate across sector boundaries and with the public, in a network that will last long after the project ends. We will provide a pool of scientists for roles in EUs knowledge based economy.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 2.54M | Year: 2015

ProteinConjugates is an inter- and multi-disciplinary network for the education of talented young scientists who will learn how to rationally design and construct the next generation of chemically-defined and innovative protein drug-conjugates for the targeted treatment of serious conditions such as cancer or rheumatoid arthritis. A complementary interaction between academy and pharmaceutical industry is at the centre of such a network, which involves 8 academic groups and 1 SME partner as beneficiaries, and 2 leading European industrial partner organizations that will host secondments while providing training. The combined expertise of the beneficiaries and industrial partners in synthesis of complex molecules, molecular dynamics, supramolecular self-assembly, site-selective chemical protein modification, protein/antibody engineering, cancer therapeutics and drug development together with the experience in project management and training of PhDs and Postdocs of the PIs, will create a multidisciplinary environment where 10 young researchers can foster their knowledge and skills while developing the most innovative ideas in the emerging fields of chemical site-selective protein modification and protein biotherapeutics. Exposure to the highly dynamic and multidisciplinary ProteinConjugates environment will contribute to the education of the next generation of leaders in the emerging field of protein biotherapeutics, a key area of research and drug development for Europes competitiveness.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: FOF-04-2016 | Award Amount: 4.53M | Year: 2016

EU manufacturers are increasingly adopting automation solutions that can improve productivity and reduce costs.Enterprises ability to utilize these technologies may be their single most important competitive advantage, and the specific skills, experiences, competences,and flexibility of workers are pivotal to and at the core of this ability.To create a healthy workplace and increase the competitiveness of the manufacturing firms, the creation of an optimal environment for human automation integration and cooperation that harnesses and supports the workers capabilities is needed.The HUMAN project,with 12 partners from 6 European countries, aims to define and demonstrate workplaces where automation and human workers operate in harmony to improve the productivity,quality,performance of the factory as well as the worker satisfaction and safety.Objectives to be met are:Improving the integration of humans with their workplace;Enhancing the monitoring and wellbeing of human automation co-operation;Stimulating and advancing human-automation interaction and co-operation for optimal performance and achievement of complex tasks;Establishing adaptable workplaces and tasks to human cognitive and physical skills.These objectives will be achieved by developing and employing physical, conceptual, methodological, technological, and knowledge-based tools. 3 use case companies from the Furniture Manufacturing (ROYO Group), Automation Manufacturing (COMAU), & Defence & Aerospace (AIRBUS) sectors are involved. Proposed advances offered by HUMAN solutions will remove the barriers for:adaptability and flexibility of humans to continuously changing workplaces;alignment of new and complex tasks with human cognitive and physical skills;and synchronization of enterprise goals with human expectations.These advancements will in turn have significant impacts on higher customization capability,productivity,quality,worker satisfaction,and empower competitive position of the EU manufacturers.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-13-2014 | Award Amount: 6.23M | Year: 2015

Chronic liver disease affects about 29-million Europeans accounting for about 170,000 deaths at a cost of around 15.8bn. This chronic non-communicable disease is increasing at an alarming rate due to increasing European obesity, alcohol use and ageing. The three main causes of the disease; alcohol, fatty liver and viral hepatitis are amenable to prevention and treatment. Gut-derived endotoxins and bacterial translocation are central factors implicated in the pathogenesis of fatty liver disease and, the development and progression of cirrhosis. In cirrhosis, current state-of-the-art therapy to prevent recurrent complications of advanced cirrhosis is to use poorly absorbed antibiotics but long-term antibiotic therapy has problems associated with bacterial resistance, infection with resistant organisms and the cost. Treatment of fatty liver and modulation of bacterial translocation in early cirrhosis to prevent complications is an unmet need. Our academic-industrial consortium has developed a novel, patented, safe and cheap nanoporous carbon that modulates the effects of bacterial translocation in animal models of liver disease. Our feasibility studies demonstrate that this product advances the current state-of-the-art, is a TRL 4/5 and is now ready for validation through clinical trials. We propose to investigate the safety and efficacy of this novel nanoporous carbon in patients with fatty liver disease and cirrhosis. If successful, we will be able to confirm an innovative, cost-effective and novel strategy for the management of this chronic disease in a European population. Exploitation of the results of the CARBALIVE project will support the continued development of this carbon through additional private and public sector investment. The use of this innovative therapy is expected to reduce the economic burden of the disease in Europe, allow patients to achieve enhanced quality of life, improve survival, and allow many patients to return to economic productivity.

Loading University College London collaborators
Loading University College London collaborators