Cork, Ireland
Cork, Ireland

University College Cork – National University of Ireland, Cork is a constituent university of the National University of Ireland. The university is located in Cork.The university was founded in 1845 as one of three Queen’s Colleges located in Belfast, Cork, and Galway. It became University College, Cork, under the Irish Universities Act of 1908. The Universities Act 1997 renamed the university as National University of Ireland, Cork, and a Ministerial Order of 1998 renamed the university as University College Cork – National University of Ireland, Cork, though it continues to be almost universally known as University College Cork.The university was named Irish University of the Year by the Sunday Times in 2003, 2005, and 2011. The 2011 QS World University Rankings assigned a 5-star rating to UCC, and ranked the university amongst the top 2% of universities worldwide. Also in 2011, University College Cork became the first university worldwide to achieve the ISO 50001 standard in energy management. UCC ranks 4th worldwide in terms of food research, and in 2013 the medical school was ranked among the top 200 in the world.Dr. Michael B. Murphy has been president of the university since February 2007. Wikipedia.


Time filter

Source Type

Patent
Trinity College Dublin and University College Cork | Date: 2017-04-12

A poly(methyl methacrylate) (PMMA) membrane having a highly porous, reticulated, 3-D structure suitable for lateral flow diagnostic applications is described. Also described is a method for producing a poly(methyl methacrylate) (PMMA) membrane that comprises the steps of mixing a suitable amount of PMMA, a solvent and a optionally one of either a co-solvent or a non-solvent to produce a solution, casting a thin film of the solution onto a support, and removal of the solvent from the solution to produce the PMMA membrane. A lateral flow diagnostic device comprising a highly porous PMMA membrane as a reaction membrane is also described


Liang K.L.,University College Cork
Blood | Year: 2013

There is growing research interest in the mammalian Tribbles (Trib) family of serine/threonine pseudokinases and their oncogenic association with acute leukemias. This review is to understand the role of Trib genes in hematopoietic malignancies and their potential as targets for novel therapeutic strategies in acute myeloid leukemia and acute lymphoblastic leukemia. We discuss the role of Tribs as central signaling mediators in different subtypes of acute leukemia and propose that inhibition of dysregulated Trib signaling may be therapeutically beneficial.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: NMP-29-2015 | Award Amount: 6.33M | Year: 2016

The HISENTS vision is to address the problem of the dearth of high-quality tools for nano-safety assessment by introducing an innovative multimodular high throughput screening (HTP) platform including a set of individual modules each representing a critical physiological function connected and integrated in a hierarchical vectorial manner by a microfluidic network. The increase of the capacity to perform nano-safety assessment will be realised by innovative instrumentation developments for HTP and high content analysis (HCA) approaches. Toxicogenomics on chip is also one embedded objective. Our interdisciplinary approach focuses on tools to maximise the read-across and to assess applicable endpoints for advanced risk assessment of nanomaterials (NM). The main goal is thus to establish individual chip-based microfluidic tools as devices for (nano)toxicity screening which can be combined as an on-line HTP platform. Seven different chip-based sensor elements will be developed and hierarchically combined via a flow system to characterise toxicity pathways of NM. The HISENTS platform allows the grouping and identifying of NM. Parallel to the screening, the pathway and interaction of NM in biological organisms will be simulated using the physiologically based pharmacokinetic (PBPK) model. Using the different sensor modules from the molecular to cell to organ level, HISENTS can input quantitative parameters into the PBPK model resulting in an effective pathway analysis for NM and other critical compounds. The developed platform is crucial for realistic nano-safety assessment and will also find extensive application in pharmaceutical screening due to the flexible modifications of the HTP platform. The specific objective is the development of a multimodular HTP platform as new a screening tool for enhancing the efficiency of hazard profiling. Currently, no such flexible, easy-to-use screening platform with flexibly combinable chip-based sensors is available on the market.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: ICT-28-2015 | Award Amount: 10.29M | Year: 2016

Photonics is essential in todays life science technology. PIX4life will mature a state of the art silicon nitride (SiN) photonics pilot line for life science applications in the visible range and pave the way to make it accessible as an enabler for product development by a broad range of industrial customers. We aim at 1) establishing a validated CMOS compatible SiN technology platform in the visible range for complex densely integrated photonics integrated circuits (PICs), 2) developing a supply chain to integrate mature semiconductor laser sources and CMOS detector arrays with the SiN PICs on the basis of technologies that are scalable to high volume, 3) establishing appropriate design kits and tools, 4) demonstrating the performance of the pilot line for well-chosen life science applications in the domain of vital sensing, multispectral sources for super-resolution microscopy, cytometry and 3D tissue imaging, 5) setting up the logistics for multi-project-wafer (MPW) access to the pilot line. Integrated photonics has demonstrated that optical functions can be realized in a more compact, robust and cost-effective way by integrating functionalities on a single chip. At present industrialization is limited to telecom applications at infrared wavelengths. The field of life sciences is heavily dependent on bulky and expensive optical systems and would benefit enormously from low cost photonic implementations. However this field requires a visible light PIC-technology. Proof of concept demonstrations are abundant, but pilot line and manufacturing capacity is limited, inhibiting industrial take up. PIX4life will drive the future European RTD in visible photonic applications for life sciences by bridging technological research (via participation of 2 academic and 2 research institutes) towards industrial development (via participation of a foundry, two large companies and 9 fabless SMEs, either technology suppliers or life science end users).


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: FOF-11-2016 | Award Amount: 7.63M | Year: 2016

Data and services have become the key factor in manufacturing processes. The need to react on dynamically changing market demands is dramatically rising. One of the most imperative problems so far is to connect supply chain data and services between enterprises and to connect value chain data within a factory, so that it can meaningfully support decision-making. COMPOSITION will create a digital automation framework (the COMPOSITION IIMS) that optimizes the manufacturing processes by exploiting existing data, knowledge and tools to increase productivity and dynamically adapt to changing market requirements. This technology acts as the technical operating system for business connections between factories and their suppliers. Furthermore, it opens a new space for third party entities to actively interact in the supply chain, e.g., by providing services to improve cycle time, cost, flexibility or resource usage. In addition to the supply chain improvements, also the processes inside the company will be addressed and optimized. Data across the (multi sided) company internal value chain is integrated by an Integrated Information Management System (IIMS) with optimisation and modelling tools for resource management including innovative, multi-level, real-time cross-domain analytics including a Decision Support System. The technology will be based on extending existing FI-WARE and FITMAN catalogues and LINKSmart Middleware and adapt the concept of Industrial Data Space. COMPOSITION will implement, demonstrate and validate the system in two multi-sided pilots that show the modularity, scalability and re-configurability of the platform across multiple application domains. The first pilot in the biomedical device domain focuses on the integrated information management system in a multi-sided manufacturing process. The second pilot concentrates on the interaction between different companies using the COMPOSITION ecosystem with the agent-based marketplace for collaboration.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: INFRAIA-01-2016-2017 | Award Amount: 9.29M | Year: 2016

Atmospheric simulation chambers are the most advanced tools for elucidating processes that occur in the atmosphere. They lay the foundations for air quality and climate models and also aid interpretation of field measurements. EUROCHAMP-2020 will further integrate the most advanced European atmospheric simulation chambers into a world-class infrastructure for research and innovation. A co-ordinated set of networking activities will deliver improved chamber operability across the infrastructure, as well as standard protocols for data generation and analysis. Outreach and training activities will foster a strong culture of cooperation with all stakeholders and users. Collaborative links will be established with other environmental research infrastructures to promote integration and sustainability within the European Research Area. Cooperation with private sector companies will be actively promoted to exploit the innovation potential of the infrastructure by supporting development of scientific instruments, sensor technologies and de-polluting materials. Trans-national access will be extended to sixteen different chambers and four calibration centres. A new, upgraded data centre will provide virtual access to a huge database of experimental chamber data and advanced analytical resources. Joint research activities will enhance the capability of the infrastructure to provide improved services for users. Measurement techniques and experimental protocols will be further developed to facilitate new investigations on climate change drivers, impacts of air quality on health and cultural heritage, while also stimulating trans-disciplinary research. Advanced process models will be developed for interpretation of chamber experiments and wider use in atmospheric modelling. Overall, EUROCHAMP-2020 will significantly enhance the capacity for exploring atmospheric processes and ensure that Europe retains its place as the world-leader in atmospheric simulation chamber research.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-03-2016 | Award Amount: 4.57M | Year: 2017

The objective of INSPEX is to make obstacle detection capabilities that are currently only feasible on autonomous vehicles available as a personal portable/wearable multi-sensor, miniaturised, low power spatial exploration system. The INSPEX System will be used for real-time 3D detection, location and warning of obstacles under all environmental conditions in indoor and outdoor environments with static and mobile obstacles. Applications include navigation for the visually/mobility impaired, safer human navigation in reduced visibility conditions and small robot/drone obstacle avoidance. The partners bring state-of-the-art range sensors (LiDAR, UWB radar and MEMS ultrasound) to the project. INSPEX will miniaturise and reduce the power consumption of these sensors to facilitate systems integration. These will then be integrated with an IMU, environmental sensing, signal and data processing, wireless communications, power efficient data fusion and user interface, all in a miniature, low power system designed to operate within wider smart/IoT environments. The main INSPEX Demonstrator will embed the INSPEX System in a white cane for the visually impaired and provide 3D spatial audio feedback on obstacle location. INSPEX directly addresses: - ICT-3 Challenge to develop and manufacture smart objects and systems that closely integrate sensors, actuators, innovative MEMS, processing power, embedded memory and communication capabilities, all optimising the use of supply power that can easily be made interoperable within systems of systems - RIA aims to make technological breakthroughs and their validation in laboratory environments of the next generations of miniaturised smart integrated systems and industrial-relevant technological developments, modelling and validation that will enable solutions in particular for health and well-being safety and security manufacturing. INSPEX is taking reliability and ethical issues strongly into consideration.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: LCE-03-2015 | Award Amount: 13.71M | Year: 2016

The FloTEC project will demonstrate the potential for floating tidal stream turbines to provide low-cost, high-value energy to the European grid mix. The FloTEC project has 5 core objectives: 1. Demonstrate a full-scale prototype floating tidal energy generation system for optimised energy extraction in locally varying tidal resources; 2. Reduce the Levelised Cost of Energy of floating tidal energy from current estimated 250/MWh to 200/MWh, through both CAPEX and OPEX cost reductions in Scotrenewables Tidal Technology; 3. Develop potential of tidal energy generation towards flexible, baseload generation, through the integration of energy storage; 4. Demonstrate the potential for centralised MV power conversion to provide a generic, optimised low-cost solution for tidal arrays; 5. Progress tidal energy towards maturity and standard project financing by reducing cost and risk, improving reliability, and developing an advanced financing plan for first arrays. This will be realised through the construction of a M2-SR2000 2MW turbine - which will incorporate the following innovations: 50% greater energy capture through enlarged rotors with a lower rated speed; Automated steel fabrication; Centralised MV power conversion Integrated Energy Storage Mooring load dampers Composite Blade Manufacturing The SR2000-M2 will be deployed alongside the existing SR2000-M1 at EMEC to form a 4MW floating tidal array, serving as a demonstration platform for commercially viable tidal stream energy as a baseload supply.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: NMBP-02-2016 | Award Amount: 7.43M | Year: 2017

Power electronics is the key technology to control the flow of electrical energy between source and load for a wide variety of applications from the GWs in energy transmission lines, the MWs in datacenters that power the internet to the mWs in mobile phones. Wide band gap semiconductors such as GaN use their capability to operate at higher voltages, temperatures, and switching frequencies with greater efficiencies. The GaNonCMOS project aims to bring GaN power electronic materials, devices and systems to the next level of maturity by providing the most densely integrated materials to date. This development will drive a new generation of densely integrated power electronics and pave the way toward low cost, highly reliable systems for energy intensive applications. This will be realized by integrating GaN power switches with CMOS drivers densely together using different integration schemes from the package level up to the chip level including wafer bonding between GaN on Si(111) and CMOS on Si (100) wafers. This requires the optimization of the GaN materials stack and device layout to enable fabrication of normally-off devices for such low temperature integration processes (max 400oC). In addition, new soft magnetic core materials reaching switching frequencies up to 200 Mhz with ultralow power losses will be developed. This will be assembled with new materials and methods for miniaturised packages to allow GaN devices, modules and systems to operate under maximum speed and energy efficiency. A special focus is on the long term reliability improvements over the full value chain of materials, devices, modules and systems. This is enabled by the choice of consortium partners that cover the entire value chain from universities, research centers, SMEs, large industries and vendors that incorporate the developed technology into practical systems such as datacenters, automotive, aviation and e-mobility bikes


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: ICT-29-2016 | Award Amount: 15.57M | Year: 2017

PIXAPP will establish the worlds first open access Photonic Integrated Circuit (PIC) assembly & packaging Pilot Line. It combines a highly-interdisciplinary team of Europes leading industrial & research organisations. PIXAPP provides Europes SMEs with a unique one-stop-shop, enabling them to exploit the breakthrough advantages of PIC technologies. PIXAPP bridges the valley of death, providing SMEs with an easy access route to take R&D results from lab to market, giving them a competitive advantage over global competition. Target markets include communications, healthcare & security, which are of great socio-economic importance to Europe. PIXAPPs manufacturing capabilities can support over 120 users per year, across all stages of manufacturing, from prototyping to medium scale manufacture. PIXAPP bridges missing gaps in the value chain, from assembly & packaging, through to equipment optimisation, test and application demonstration. To achieve these ambitious objectives, PIXAPP will; 1) Combine a group of Europes leading industrial & research organisations in an advanced PIC assembly & packaging Pilot Line facility.2) Develop an innovative Pilot Line operational model that coordinates activities between consortium partners & supports easy user access through a single entry point. 3) Establish packaging standards that provide cost-efficient assembly & packaging solutions, enabling transfer to full-scale industrial manufacture. 4) Create the highly-skilled workforce required to manage & operate these industrial manufacturing facilities.5) Develop a business plan to ensure Pilot Line sustainability & a route to industrial manufacturing. PIXAPP will deliver significant impacts to a wide stakeholder group, highlighting how industrial & research sectors can collaborate to address emerging socio-economic challenges.

Loading University College Cork collaborators
Loading University College Cork collaborators