University Claude Bernard Lyon 1
Lyon, France
Time filter
Source Type

University of Strasbourg, French National Center for Scientific Research and University Claude Bernard Lyon 1 | Date: 2015-07-09

A method for modifying a cellular polymer foam with apparent porosity, which includes providing a cellular polymer foam with apparent porosity, placing the cellular polymer foam in contact with at least one compound in order to obtain a cellular polymer foam including on the surface thereof an intermediate phase formed from the compound having at least one catechol unit. The foam may be used as a catalyst substrate.

University Claude Bernard Lyon 1 and Center Leon Berard | Date: 2017-03-29

The present invention provides antibodies directed against ICOS or a derivative thereof which induce IL-10 and IFN production, induce CD4+ T cells proliferation, reduce Tconv proliferation, and increase the immunosuppressive function of Treg. The present invention also relates to uses of said antibodies for treating autoimmune diseases, transplantation rejection and graft versus host disease.

French Institute of Petroleum, French National Center for Scientific Research and University Claude Bernard Lyon 1 | Date: 2015-10-06

The invention relates to a composition that contains a first semiconductor SC1, particles that comprise one or more element(s) M in the metal state selected from among an element of groups IVB, VB, VIB, VIIB, VIIIB, IB, IIB, IIIA, IVA and VA of the periodic table, and a second semiconductor SC2 that comprises cerium oxide, with said first semiconductor SC1 being in direct contact with said particles that comprise one or more element(s) M in the metal state, with said particles being in direct contact with said second semiconductor SC2 that comprises cerium oxide in such a way that the second semiconductor SC2 covers at least 50% of the surfaces of the particles that comprise one or more element(s) M in the metal state. The invention also relates to its preparation method as well as its application of photocatalysis.

University Claude Bernard Lyon 1, Hospices Civils De Lyon and University of Washington | Date: 2017-03-29

The present invention relates to the use of at least one biomarker for predicting the severity of a disease caused by the infection of an individual with an influenza virus, wherein said biomarker is selected in a group comprising (i) the alpha diversity value of the microbiome present in a respiratory sample of said individual and (ii) the microbiome profile of the said respiratory sample.

University Claude Bernard Lyon 1 and French National Center for Scientific Research | Date: 2015-07-07

The present invention relates to a gallinaceous bird embryo into which human neuroblastoma cells have been grafted at the level of the neural crests. The invention also relates to a process for preparing such a gallinaceous bird embryo, and to a process for screening for therapeutic molecules intended for the treatment of a neuroblastoma tumor based on the use of this gallinaceous bird embryo.

Hospices Civils De Lyon and University Claude Bernard Lyon 1 | Date: 2015-06-05

The invention relates to an in vitro process for determining the functional IL-17 pro-inflammatory dependent level (IPDL) of a biological sample, comprising the following steps:

Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

Understanding the human brain is one of the greatest scientific challenges of our time. Such an understanding can provide profound insights into our humanity, leading to fundamentally new computing technologies, and transforming the diagnosis and treatment of brain disorders. Modern ICT brings this prospect within reach. The HBP Flagship Initiative (HBP) thus proposes a unique strategy that uses ICT to integrate neuroscience data from around the world, to develop a unified multi-level understanding of the brain and diseases, and ultimately to emulate its computational capabilities. The goal is to catalyze a global collaborative effort. During the HBPs first Specific Grant Agreement (SGA1), the HBP Core Project will outline the basis for building and operating a tightly integrated Research Infrastructure, providing HBP researchers and the scientific Community with unique resources and capabilities. Partnering Projects will enable independent research groups to expand the capabilities of the HBP Platforms, in order to use them to address otherwise intractable problems in neuroscience, computing and medicine in the future. In addition, collaborations with other national, European and international initiatives will create synergies, maximizing returns on research investment. SGA1 covers the detailed steps that will be taken to move the HBP closer to achieving its ambitious Flagship Objectives.

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC1-PM-22-2016 | Award Amount: 15.59M | Year: 2016

ZIKAlliance is a multidisciplinary project with a global One Health approach, built: on a multi-centric network of clinical cohorts in the Caribbean, Central & South America; research sites in countries where the virus has been or is currently circulating (Africa, Asia, Polynesia) or at risk for emergence (Reunion Island); a strong network of European and Brazilian clinical & basic research institutions; and multiple interfaces with other scientific and public health programmes. ZIKAlliance will addrees three key objectives relating to (i) impact of Zika virus (ZIKV) infection during pregnancy and short & medium term effects on newborns, (ii) associated natural history of ZIKV infection in humans and their environment in the context of other circulating arboviruses and (iii) building the overall capacity for preparedness research for future epidemic threats in Latin America & the Caribbean. The project will take advantage of large standardised clinical cohorts of pregnant women and febrile patients in regions of Latin America and the Caribbean were the virus is circulating, expanding a preexisting network established by the IDAMS EU project. I will also benefit of a very strong expertise in basic and environmental sciences, with access to both field work and sophisticated technological infrastructures to characterise virus replication and physiopathology mechanisms. To meet its 3 key objectives, the scientific project has been organised in 9 work packages, with WP2/3 dedicated to clinical research (cohorts, clinical biology, epidemiology & modeling), WP3/4 to basic research (virology & antivirals, pathophysiology & animal models), WP5/6 to environmental research (animal reservoirs, vectors & vector control) , WP7/8 to social sciences & communication, and WP9 to management. The broad consortium set-up allow gathering the necessary expertise for an actual interdisciplinary approach, and operating in a range of countries with contrasting ZIKV epidemiological status.

Baudoin O.,University Claude Bernard Lyon 1
Chemical Society Reviews | Year: 2011

Transition-metal-catalyzed C-H bond arylation has recently emerged as a powerful tool for the functionalization of organic molecules that may complement or even replace traditional catalytic cross-couplings. While many efforts have focused on the arylation of arenes and heteroarenes in the past two decades, less studies have been devoted to the arylation of nonacidic C-H bonds of alkyl groups. This tutorial review highlights recent work in this active area. © 2011 The Royal Society of Chemistry.

Agency: European Commission | Branch: H2020 | Program: ERC-STG | Phase: ERC-2016-STG | Award Amount: 2.00M | Year: 2017

Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) and are two well-established powerful and versatile tools that are extensively used in many fields of research, in clinics and in industry. Despite considerable efforts involving highly sophisticated instrumentation, these techniques suffer from low sensitivity, which keeps many of todays most interesting problems in modern analytical sciences below the limits of MR detection. Hyperpolarization (HP) in principle provides a solution to this limitation. We have recently pioneered breakthrough approaches using dissolution dynamic nuclear polarization (d-DNP) for preparing nuclear spins in highly aligned states, and therefore boosting sensitivity in several proof-of-concept reports on model systems. The proposed project aims to leverage these new advances through a series of new concepts i) to generate the highest possible hyperpolarization that can be transported in a persistent state, and ii) to demonstrate their use in magnetic resonance experiments with > 10000 fold sensitivity enhancements, with the potential of revolutionizing the fields of MRI and NMR. By physically separating the source of polarization from the substrate at a microscopic level, we will achieve polarized samples with lifetimes of days that can be stored and transported over long distances to MRI centers, hospitals and NMR laboratories. Notable applications in the fields of drug discovery, metabolomics and real-time metabolic imaging in living animals will be demonstrated. These goals require a leap forward with respect to todays protocols, and we propose to achieve this through a combination of innovative sample formulations, new NMR methodology and advanced instrumentation. This project will yield to a broadly applicable method revolutionizing analytical chemistry, drug discovery and medical diagnostics, and thereby will provide a powerful tool to solve challenges at the forefront of molecular and chemical sciences today.

Loading University Claude Bernard Lyon 1 collaborators
Loading University Claude Bernard Lyon 1 collaborators