Time filter

Source Type

Galie N.,University of Bologna | Barbera J.A.,University of Barcelona | Frost A.E.,Baylor College of Medicine | Ghofrani H.-A.,Universities of Giessen and Marburg Lung Center | And 15 more authors.
New England Journal of Medicine | Year: 2015

Background Data on the effect of initial combination therapy with ambrisentan and tadalafil on long-term outcomes in patients with pulmonary arterial hypertension are scarce. Methods In this event-driven, double-blind study, we randomly assigned, in a 2:1:1 ratio, participants with World Health Organization functional class II or III symptoms of pulmonary arterial hypertension who had not previously received treatment to receive initial combination therapy with 10 mg of ambrisentan plus 40 mg of tadalafil (combination-therapy group), 10 mg of ambrisentan plus placebo (ambrisentanmonotherapy group), or 40 mg of tadalafil plus placebo (tadalafil-monotherapy group), all administered once daily. The primary end point in a time-to-event analysis was the first event of clinical failure, which was defined as the first occurrence of a composite of death, hospitalization for worsening pulmonary arterial hypertension, disease progression, or unsatisfactory long-term clinical response. RESULTS The primary analysis included 500 participants; 253 were assigned to the combination-therapy group, 126 to the ambrisentan-monotherapy group, and 121 to the tadalafil-monotherapy group. A primary end-point event occurred in 18%, 34%, and 28% of the participants in these groups, respectively, and in 31% of the pooledmonotherapy group (the two monotherapy groups combined). The hazard ratio for the primary end point in the combination-therapy group versus the pooled-monotherapy group was 0.50 (95% confidence interval [CI], 0.35 to 0.72; P<0.001). At week 24, the combination-therapy group had greater reductions from baseline in N-terminal pro-brain natriuretic peptide levels than did the pooled-monotherapy group (mean change,-67.2% vs.-50.4%; P<0.001), as well as a higher percentage of patients with a satisfactory clinical response (39% vs. 29%; odds ratio, 1.56 [95% CI, 1.05 to 2.32]; P = 0.03) and a greater improvement in the 6-minute walk distance (median change from baseline, 48.98 m vs. 23.80 m; P<0.001). The adverse events that occurred more frequently in the combination-therapy group than in either monotherapy group included peripheral edema, headache, nasal congestion, and anemia. Conclusions Among participants with pulmonary arterial hypertension who had not received previous treatment, initial combination therapy with ambrisentan and tadalafil resulted in a significantly lower risk of clinical-failure events than the risk with ambrisentan or tadalafil monotherapy. Copyright © 2015 Massachusetts Medical Society.

El Agha E.,Universities of Giessen and Marburg Lung Center | Al Alam D.,Saban Research Institute | Carraro G.,Universities of Giessen and Marburg Lung Center | MacKenzie B.,Universities of Giessen and Marburg Lung Center | And 7 more authors.
PLoS ONE | Year: 2012

Fibroblast growth factor 10 (Fgf10) is a key regulator of diverse organogenetic programs during mouse development, particularly branching morphogenesis. Fgf10-null mice suffer from lung and limb agenesis as well as cecal and colonic atresia and are thus not viable. To date, the Mlcv1v-nLacZ-24 transgenic mouse strain (referred to as Fgf10LacZ), which carries a LacZ insertion 114 kb upstream of exon 1 of Fgf10 gene, has been the only strain to allow transient lineage tracing of Fgf10-positive cells. Here, we describe a novel Fgf10Cre-ERT2 knock-in line (Fgf10iCre) in which a Cre-ERT2-IRES-YFP cassette has been introduced in frame with the ATG of exon 1 of Fgf10 gene. Our studies show that Cre-ERT2 insertion disrupts Fgf10 function. However, administration of tamoxifen to Fgf10iCre; Tomatoflox double transgenic embryos or adult mice results in specific labeling of Fgf10-positive cells, which can be lineage-traced temporally and spatially. Moreover, we show that the Fgf10iCre line can be used for conditional gene inactivation in an inducible fashion during early developmental stages. We also provide evidence that transcription factors located in the first intron of Fgf10 gene are critical for maintaining Fgf10 expression over time. Thus, the Fgf10iCre line should serve as a powerful tool to explore the functions of Fgf10 in a controlled and stage-specific manner. © 2012 El Agha et al.

Richter A.M.,Universities of Giessen and Marburg Lung Center | Walesch S.K.,Universities of Giessen and Marburg Lung Center | Wurl P.,Diakoniekrankenhaus Halle | Taubert H.,Friedrich - Alexander - University, Erlangen - Nuremberg | Dammann R.H.,Universities of Giessen and Marburg Lung Center
Oncogenesis | Year: 2012

The Ras association domain family (RASSF) comprises a group of tumor suppressors that are frequently epigenetically inactivated in various tumor entities and linked to apoptosis, cell cycle control and microtubule stability. In this work, we concentrated on the newly identified putative tumor suppressor RASSF10. Methylation analysis reveals RASSF10 promoter hypermethylation in lung cancer, head and neck (HN) cancer, sarcoma and pancreatic cancer. An increase in RASSF10 methylation from normal tissues, primary tumors to cancer cell lines was observed. Methylation was reversed by 5-aza-2'-deoxycytidine treatment leading to reexpression of RASSF10. We further show that overexpression of RASSF10 suppresses colony formation in cancer cell lines. In addition, RASSF10 is upregulated by cell-cell contact and regulated on promoter level as well as endogenously by forskolin, protein kinase A (PKA) and activator Protein 1 (AP-1), linking RASSF10 to the cAMP signaling pathway. Knockdown of the AP-1 member JunD interfered with contact inhibition induced RASSF10 expression. In summary, we found RASSF10 to be epigenetically inactivated by hypermethylation of its CpG island promoter in lung, HN, sarcoma and pancreatic cancer. Furthermore, our novel findings suggest that tumor suppressor RASSF10 is upregulated by PKA and JunD signaling upon contact inhibition and that RASSF10 suppresses growth of cancer cells. © 2012 Macmillan Publishers Limited. All rights reserved.

Veith C.,Universities of Giessen and Marburg Lung Center | Marsh L.M.,Ludwig Boltzmann Research Institute | Wygrecka M.,Justus Liebig University | Rutschmann K.,Dualsystems Biotech | And 4 more authors.
American Journal of Pathology | Year: 2012

Pulmonary hypertension (PH) is a fatal disease characterized by remodeling processes such as increased migration and proliferation of pulmonary arterial smooth muscle cells (PASMC), enhanced matrix deposition, and dysregulation of cytoskeletal proteins. However, the contribution of cytoskeletal proteins in PH is still not fully understood. In this study, we have used a yeast two-hybrid screen to identify novel binding partners of the cytoskeletal adaptor protein four-and-a-half LIM domains 1 (Fhl-1). This identified paxillin as a new Fhl-1 interacting partner, and consequently we assessed its contribution to vascular remodeling processes. Native protein-protein binding was confirmed by co-immunoprecipitation studies in murine and human PASMC. Both proteins co-localized in PASMC in vitro and in vivo. In lung samples from idiopathic pulmonary arterial hypertension patients, paxillin expression was increased on mRNA and protein levels. Laser-microdissection of murine intrapulmonary arteries revealed elevated paxillin expression in hypoxia-induced PH. Furthermore, hypoxia-dependent upregulation of paxillin was HIF-1α dependent. Silencing of paxillin expression led to decreased PASMC adhesion, proliferation, and increased apoptosis. Regulation of these processes occurred via Akt and Erk1/2 kinases. In addition, adhesion of PASMC to the extracellular matrix protein fibronectin was critically dependent on paxillin expression. To summarize, we identified paxillin as a new regulator protein of PASMC growth. © 2012 American Society for Investigative Pathology.

Veit F.,Universities of Giessen and Marburg Lung Center | Pak O.,Universities of Giessen and Marburg Lung Center | Brandes R.P.,Justus Liebig University | Weissmann N.,Universities of Giessen and Marburg Lung Center
Antioxidants and Redox Signaling | Year: 2015

Significance: An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. Recent Advances: Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. Critical Issues and Future Directions: In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation. Antioxid. Redox Signal. 22, 537-552 © Copyright 2015, Mary Ann Liebert, Inc. 2015.

Discover hidden collaborations