Time filter

Source Type

Utrecht, Netherlands

Nijenhuis W.,Universiteitsweg 100
Nature Cell Biology

Kinetochores are specialized multi-protein complexes that play a crucial role in maintaining genome stability. They bridge attachments between chromosomes and microtubules during mitosis and they activate the spindle assembly checkpoint (SAC) to arrest division until all chromosomes are attached. Kinetochores are able to efficiently integrate these two processes because they can rapidly respond to changes in microtubule occupancy by switching localized SAC signalling ON or OFF. We show that this responsiveness arises because the SAC primes kinetochore phosphatases to induce negative feedback and silence its own signal. Active SAC signalling recruits PP2A-B56 to kinetochores where it antagonizes Aurora B to promote PP1 recruitment. PP1 in turn silences the SAC and delocalizes PP2A-B56. Preventing or bypassing key regulatory steps demonstrates that this spatiotemporal control of phosphatase feedback underlies rapid signal switching at the kinetochore by: allowing the SAC to quickly transition to the ON state in the absence of antagonizing phosphatase activity; and ensuring phosphatases are then primed to rapidly switch the SAC signal OFF when kinetochore kinase activities are diminished by force-producing microtubule attachments. © 2014 Nature Publishing Group Source

Basten S.G.,Universiteitsweg 100 | Basten S.G.,University Utrecht | Giles R.H.,University Utrecht

Dysfunctional cilia underlie a broad range of cellular and tissue phenotypes and can eventually result in the development of ciliopathies: pathologically diverse diseases that range from clinically mild to highly complex and severe multi-organ failure syndromes incompatible with neonatal life. Given that virtually all cells of the human body have the capacity to generate cilia, it is likely that clinical manifestations attributed to ciliary dysfunction will increase in the years to come. Disputed but nevertheless enigmatic is the notion that at least a subset of tumor phenotypes fit within the ciliopathy disease spectrum and that cilia loss may be required for tumor progression. Contending for the centrosome renders ciliation and cell division mutually exclusive; a regulated tipping of balance promotes either process. The mechanisms involved, however, are complex. If the hypothesis that tumorigenesis results from dysfunctional cilia is true, then why do the classic ciliopathies only show limited hyperplasia at best? Although disassembly of the cilium is a prerequisite for cell proliferation, it does not intrinsically drive tumorigenesis per se. Alternatively, we will explore the emerging evidence suggesting that some tumors depend on ciliary signaling. After reviewing the structure, genesis and signaling of cilia, the various ciliopathy syndromes and their genetics, we discuss the current debate of tumorigenesis as a ciliopathy spectrum defect, and describe recent advances in this fascinating field. © 2013 Basten and Giles; licensee BioMed Central Ltd. Source

Elkon R.,Netherlands Cancer Institute | Drost J.,Netherlands Cancer Institute | van Haaften G.,Netherlands Cancer Institute | Jenal M.,Netherlands Cancer Institute | And 4 more authors.
Genome Biology

Background: The majority of mammalian genes contain multiple poly(A) sites in their 3' UTRs. Alternative cleavage and polyadenylation are emerging as an important layer of gene regulation as they generate transcript isoforms that differ in their 3' UTRs, thereby modulating genes' response to 3' UTR-mediated regulation. Enhanced cleavage at 3' UTR proximal poly(A) sites resulting in global 3' UTR shortening was recently linked to proliferation and cancer. However, mechanisms that regulate this enhanced alternative polyadenylation are unknown.Results: Here, we explored, on a transcriptome-wide scale, alternative polyadenylation events associated with cellular proliferation and neoplastic transformation. We applied a deep-sequencing technique for identification and quantification of poly(A) sites to two human cellular models, each examined under proliferative, arrested and transformed states. In both cell systems we observed global 3' UTR shortening associated with proliferation, a link that was markedly stronger than the association with transformation. Furthermore, we found that proliferation is also associated with enhanced cleavage at intronic poly(A) sites. Last, we found that the expression level of the set of genes that encode for 3'-end processing proteins is globally elevated in proliferation, and that E2F transcription factors contribute to this regulation.Conclusions: Our results comprehensively identify alternative polyadenylation events associated with cellular proliferation and transformation, and demonstrate that the enhanced alternative polyadenylation in proliferative conditions results not only in global 3' UTR shortening but also in enhanced premature cleavage in introns. Our results also indicate that E2F-mediated co-transcriptional regulation of 3'-end processing genes is one of the mechanisms that links enhanced alternative polyadenylation to proliferation. © 2012 Elkon et al.; licensee BioMed Central Ltd. Source

Van Kouwenhove M.,Netherlands Cancer Institute | Kedde M.,Netherlands Cancer Institute | Agami R.,Netherlands Cancer Institute | Agami R.,Universiteitsweg 100
Nature Reviews Cancer

Non-protein-coding transcripts have been conserved throughout evolution, indicating that crucial functions exist for these RNAs. For example, microRNAs (miRNAs) have been found to modulate most cellular processes. The protein classes of RNA-binding proteins include essential regulators of miRNA biogenesis, turnover and activity. RNA-RNA and protein-RNA interactions are essential for post-transcriptional regulation in normal development and may be deregulated in disease. In reviewing emerging concepts of the interplay between miRNAs and RNA-binding proteins, we highlight the implications of these complex layers of regulation in cancer initiation and progression. © 2011 Macmillan Publishers Limited. All rights reserved. Source

Szypowska A.A.,University Utrecht | Burgering B.M.T.,University Utrecht | Burgering B.M.T.,Universiteitsweg 100
Antioxidants and Redox Signaling

Recent compelling data show that reactive oxygen species (ROS) not only are a harmful by-product of aerobic metabolism, but also are used as signaling molecules to regulate various cellular processes. In mammalian cells, ROS are produced transiently in response to many extracellular stimuli, including insulin, and specific inhibition of the ROS suppresses insulin-dependent signaling. Initially, this finding rationalized the concept of ROS acting as insulin mimetics. However, it is becoming evident that ROS are also causal to diabetes, a metabolic disorder characterized by insufficiency of secretion of, or receptor insensitivity to, endogenous insulin. This notion underlines a dual role for ROS in insulin signaling as both deleterious and beneficiary. Moreover, it strongly suggests that a delicate redox balance is required for insulin signaling to remain "healthy" for an organism. © 2011 Mary Ann Liebert, Inc. Source

Discover hidden collaborations