Time filter

Source Type

PubMed | University of Nottingham, Royal Brompton Hospital, Universitatsklinikum Schleswig Holstein Kiel, University Hospitals Leuven and 26 more.
Type: Journal Article | Journal: Nature genetics | Year: 2016

Congenital heart defects (CHDs) have a neonatal incidence of 0.8-1% (refs. 1,2). Despite abundant examples of monogenic CHD in humans and mice, CHD has a low absolute sibling recurrence risk (2.7%), suggesting a considerable role for de novo mutations (DNMs) and/or incomplete penetrance. De novo protein-truncating variants (PTVs) have been shown to be enriched among the 10% of syndromic patients with extra-cardiac manifestations. We exome sequenced 1,891 probands, including both syndromic CHD (S-CHD, n = 610) and nonsyndromic CHD (NS-CHD, n = 1,281). In S-CHD, we confirmed a significant enrichment of de novo PTVs but not inherited PTVs in known CHD-associated genes, consistent with recent findings. Conversely, in NS-CHD we observed significant enrichment of PTVs inherited from unaffected parents in CHD-associated genes. We identified three genome-wide significant S-CHD disorders caused by DNMs in CHD4, CDK13 and PRKD1. Our study finds evidence for distinct genetic architectures underlying the low sibling recurrence risk in S-CHD and NS-CHD.


del Savio L.,Universitatsklinikum Schleswig Holstein Kiel | Loi M.,San Raffaele Scientific Institute | Stupka E.,European Bioinformatics Institute
Bioethics | Year: 2015

Recent evidence of intergenerational epigenetic programming of disease risk broadens the scope of public health preventive interventions to future generations, i.e. non existing people. Due to the transmission of epigenetic predispositions, lifestyles such as smoking or unhealthy diet might affect the health of populations across several generations. While public policy for the health of future generations can be justified through impersonal considerations, such as maximizing aggregate well-being, in this article we explore whether there are rights-based obligations supervening on intergenerational epigenetic programming despite the non-identity argument, which challenges this rationale in case of policies that affect the number and identity of future people. We propose that rights based obligations grounded in the interests of non-existing people might fall upon existing people when generations overlap. In particular, if environmental exposure in F0 (i.e. existing people) will affect the health of F2 (i.e. non-existing people) through epigenetic programming, then F1 (i.e. existing and overlapping with both F0 and F2) might face increased costs to address F2's condition in the future: this might generate obligations upon F0 from various distributive principles, such as the principle of equal opportunity for well being. © 2015 John Wiley & Sons Ltd.

Loading Universitatsklinikum Schleswig Holstein Kiel collaborators
Loading Universitatsklinikum Schleswig Holstein Kiel collaborators