Entity

Time filter

Source Type

München, Germany

Wilman D.J.,Max Planck Insitut fur Extraterrestrische Physik | Erwin P.,Max Planck Insitut fur Extraterrestrische Physik | Erwin P.,Universitats Sternwarte Munich
Astrophysical Journal | Year: 2012

We present results of an analysis of the local (z ∼ 0) morphology-environment relation for 911 bright (MB < -19) galaxies, based on matching classical RC3 morphologies with the Sloan Digital Sky Survey based group catalog of Yang et al., which includes halo mass estimates. This allows us to study how the relative fractions of spirals, lenticulars, and ellipticals depend on halo mass over a range of 10 11.7-1014.8 h -1 M·, from isolated single-galaxy halos to massive groups and low-mass clusters. We pay particular attention to how morphology relates to central versus satellite status (where "central" galaxies are the most massive within their halo). The fraction of galaxies which are elliptical is a strong function of stellar mass; it is also a strong function of halo mass, but only for central galaxies. We interpret this as evidence for a scenario where elliptical galaxies are always formed, probably via mergers, as central galaxies within their halos, with satellite ellipticals being previously central galaxies accreted onto a larger halo. The overall fraction of galaxies which are S0 increases strongly with halo mass, from ∼10% to ∼70%. Here, too, we find striking differences between the central and satellite populations. 20% 2% of central galaxies with stellar masses M* > 1010.5 M · are S0 regardless of halo mass, but satellite S0 galaxies are only found in massive (>1013 h -1 M ·) halos, where they are 69% ± 4% of the M * > 1010.5 M· satellite population. This suggests two channels for forming S0 galaxies: one which operates for central galaxies and another which transforms lower-mass (M * ≲ 1011 M·) accreted spirals into satellite S0 galaxies in massive halos. Analysis of finer morphological structure (bars and rings in disk galaxies) shows some trends with stellar mass, but none with halo mass; this is consistent with other recent studies which indicate that bars are not strongly influenced by galaxy environment. Radio sources in high-mass central galaxies are common, similarly so for elliptical and S0 galaxies, with a frequency that increases with the halo mass. Emission-line active galactic nuclei (mostly LINERs) are more common in S0s, but show no strong trends with environment. © 2012 The American Astronomical Society. All rights reserved. Source


Tristram K.R.W.,Max Planck Institute for Radio Astronomy | Schartmann M.,Max Planck Institute for Extraterrestrial Physics | Schartmann M.,Universitats Sternwarte Munich
Astronomy and Astrophysics | Year: 2011

Context. Interferometric measurements in the mid-infrared have shown that the sizes of the warm dust distributions in active galactic nuclei (AGN) are consistent with their scaling with the square root of their luminosity. Aims. We carry out a more detailed analysis of this size-luminosity relation to investigate which of the general properties of the dusty tori in AGN can be derived from this relation. We are especially interested in the cases, where only a very small number of interferometric measurements are available and the sizes are directly calculated from the measured visibilities assuming a Gaussian brightness distribution. Methods. We improve the accuracy of the size-luminosity relation by adding a few additional size measurements from more recent interferometric observations and compare the measured sizes to those derived from hydrodynamical and radiative transfer models of AGN tori. Results. We find that a Gaussian approximation yields a reasonable estimate of the size of the brightness distribution, as long as the visibilities are within 0.2 ≤ V ≤ 0.9. The uncertainty in the size estimate depends on the true brightness distribution and is up to a factor of four for the models used in our investigation. The size estimates derived from the models are consistent with those determined from the measurements. However, the models predict a significant offset between the sizes derived for face-on (Seyfert 1 case) and edge-on (Seyfert 2 case) tori: the face-on tori should appear significantly more compact for the same luminosity. This offset is not observed in the current data, probably because of the large uncertainties and low statistics of the present interferometric measurements. Furthermore, we find a ratio of the mid- to near-infrared sizes of approximately 30, whereas the first probes the body of the torus and the second is an estimate of the inner rim. Conclusions. The size-luminosity relation of AGN tori using Gaussian size estimates is a very simple and effective tool to investigate the internal structure and geometry of AGN tori and obtain constraints on the differences between type 1 and type 2 AGN. However, to fully exploit the possibilities of investigating the nuclear distributions of gas and dust in AGN using this size-luminosity relation, more accurate interferometric measurements of a larger sample of AGN are needed. © 2011 ESO. Source


Grillo C.,Max Planck Institute for Extraterrestrial Physics | Grillo C.,Universitats Sternwarte Munich | Gobat R.,CEA Saclay Nuclear Research Center
Monthly Notices of the Royal Astronomical Society: Letters | Year: 2010

We investigate the most plausible stellar initial mass function (IMF) and the main origin of the tilt of the fundamental plane (FP) for old, massive early-type galaxies. We consider a sample of 13 bright galaxies of the Coma cluster and combine our results with those obtained from a sample of 57 lens galaxies in the same luminous mass range. We estimate the luminous mass and stellar mass-to-light ratio values of the sample galaxies by fitting their Sloan Digital Sky Survey multiband photometry with composite stellar population models computed with different dust-free, solar-metallicity templates and IMFs. We compare these measurements and those derived from two-component orbit-based dynamical modelling. The photometric and dynamical luminous mass estimates of the galaxies in our sample are consistent, within the errors, if a Salpeter IMF is adopted. On the contrary, with a Kroupa or Chabrier IMF the two luminous mass diagnostics differ at a more than 4σ level. For the massive Coma galaxies, their stellar mass-to-light ratio scales with luminous mass as the corresponding effective quantities are observed to scale on the FP. This indicates that the tilt of the FP is primarily caused by stellar population properties. We conclude that old, massive lens and non-lens early-type galaxies obey the same luminous and dynamical scaling relations, favour a Salpeter IMF, and suggest a stellar population origin for the tilt of the FP. The validity of these results for samples of early-type galaxies with different age and mass properties still remains to be tested. © 2010 The Authors. Journal compilation © 2009 RAS. Source


Grillo C.,TU Munich | Grillo C.,Max Planck Institute for Extraterrestrial Physics | Grillo C.,Universitats Sternwarte Munich
Astrophysical Journal | Year: 2010

We investigate in massive early-type galaxies the variation of their two-dimensional central fraction of dark over total mass and dark matter density as a function of stellar mass, central stellar velocity dispersion, effective radius, and central surface stellar mass density. We use a sample of approximately 1.7 × 105 galaxies from the Sloan Digital Sky Survey Data Release Seven (SDSS DR7) at redshift smaller than 0.33. We apply conservative photometric and spectroscopic cuts on the SDSS DR7 and the MPA/JHU value-added galaxy catalogs, to select galaxies with physical properties similar to those of the lenses studied in the Sloan Lens ACS Survey. The values of the galaxy stellar and total mass projected inside a cylinder of radius equal to the effective radius are obtained, respectively, by fitting the SDSS multicolor photometry with stellar population synthesis models, under the assumption of a Chabrier stellar initial mass function (IMF), and adopting a one-component isothermal total mass model with effective velocity dispersion approximated by the central stellar velocity dispersion. The plausibility of an isothermal model to represent the galaxy total mass distribution is supported by independent gravitational lensing and stellar-dynamical analyses performed in the lens subsample, which is found here to represent nicely the entire galaxy sample. We find that within the effective radius the stellar mass estimates differ from the total ones by only a relatively constant proportionality factor. In detail, we observe that the values of the projected fraction of dark over total mass and the logarithmic values of the central surface dark matter density (measured in M⊙ kpc-2) have almost Gaussian probability distribution functions, with median values of 0.64+0.08 0.11 and 9.1+0.2-0.2, respectively. We discuss the observed correlations between these quantities and other galaxy global parameters and show that our results disfavor an interpretation of the tilt of the fundamental plane in terms of differences in the galaxy dark matter content and give useful information on the possible variations of the galaxy stellar IMF and dark matter density profile. Finally, we provide some observational evidence on the likely significant contribution of dry minor mergers, feedback from active galactic nuclei, and/or coalescence of binary black holes on the formation and evolution of massive early-type galaxies. © 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. Source


Erwin P.,Max Planck Insitut fur Extraterrestrische Physik | Erwin P.,Universitats Sternwarte Munich | Debattista V.P.,University of Central Lancashire
Monthly Notices of the Royal Astronomical Society | Year: 2013

We show that direct detection and measurement of the vertically thickened parts of bars (so-called 'boxy' or 'peanut-shaped' bulges) are possible not only for edge-on galaxies but also for galaxies with moderate inclinations (i< 70°), and that examples are relatively common in the nearby Universe. The analysis of a sample of 78 nearby, moderately inclined (i ≲ 65°) early-type (S0-Sb) barred galaxies shows that the isophotal signature of the box/peanut can usually be detected for inclinations as low as i ∼ 40° - and in exceptional cases down to i ∼ 30°. In agreement with the predictions from N-body simulations, the signature is most easily detectable when the bar's position angle is within ∼50° of the galaxy major axis; in particular, galaxies where the bar lies very close to the minor axis do not show the signature clearly or at all. For galaxies with i= 40°-65° and relative angles <45°, we find evidence for the signature ≈2/3 of the time; the true frequency of box/peanut structures in bars may be higher. Comparison with N-body models also allows us to link observed photometric morphology with 3D physical structures, and thus estimate the relative sizes of box/peanut structures and bars. For our local sample, we find that box/peanut structures range in radial size (measured along the bar major axis) from 0.4 to 3.8 kpc (mean 1.5 ± 0.9 kpc) and span 0.26-0.58 of the bar length (mean of 0.38 ± 0.08). This is a clear observational confirmation that when bars thicken, it is not the entire bar which does so, but only the inner part. This technique can also be used to identify galaxies with bars which have not vertically thickened. We suggest that NGC 3049 and IC 676 may be particularly good examples, and that the fraction of S0-Sb bars which lack box/peanut structures is at least ∼13 per cent. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. Source

Discover hidden collaborations