Le Touquet – Paris-Plage, France
Le Touquet – Paris-Plage, France

Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-06-2014 | Award Amount: 6.91M | Year: 2015

AQUACROSS aims to support EU efforts to enhance the resilience and stop the loss of biodiversity of aquatic ecosystems as well as to ensure the ongoing and future provision of aquatic ecosystem services. It focuses on advancing the knowledge base and application of the ecosystem-based management concept for aquatic ecosystems by developing cost effective measures and integrated management practices. AQUACROSS considers the EU policy framework (i.e. goals, concepts, time frames) for aquatic ecosystems and builds on knowledge stemming from different sources (i.e. WISE, BISE, Member State reporting, modelling) to develop innovative management tools, concepts, and business models (i.e. indicators, maps, ecosystem assessments, participatory approaches, mechanisms for promoting the delivery of ecosystem services) for aquatic ecosystems at various scales. It thereby provides an unprecedented effort to unify policy concepts, knowledge, and management concepts of freshwater, coastal, and marine ecosystems to support the cost-effective achievement of the targets set out by the EU 2020 Biodiversity Strategy.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-16-2014 | Award Amount: 15.99M | Year: 2015

Terrestrial and marine ecosystems provide essential services to human societies. Anthropogenic pressures, however, cause serious threat to ecosystems, leading to habitat degradation, increased risk of collapse and loss of ecosystem services. Knowledge-based conservation, management and restoration policies are needed to improve ecosystem benefits in face of increasing pressures. ECOPOTENTIAL makes significant progress beyond the state-of-the-art and creates a unified framework for ecosystem studies and management of protected areas (PA). ECOPOTENTIAL focuses on internationally recognized PAs in Europe and beyond in a wide range of biogeographic regions, and it includes UNESCO, Natura2000 and LTER sites and Large Marine Ecosystems. Best use of Earth Observation (EO) and monitoring data is enabled by new EO open-access ecosystem data services (ECOPERNICUS). Modelling approaches including information from EO data are devised, ecosystem services in current and future conditions are assessed and the requirements of future protected areas are defined. Conceptual approaches based on Essential Variables, Macrosystem Ecology and cross-scale interactions allow for a deeper understanding of the Earths Critical Zone. Open and interoperable access to data and knowledge is assured by a GEO Ecosystem Virtual Laboratory Platform, fully integrated in GEOSS. Support to transparent and knowledge-based conservation and management policies, able to include information from EO data, is developed. Knowledge gained in the PAs is upscaled to pan-European conditions and used for planning and management of future PAs. A permanent stakeholder consultancy group (GEO Ecosystem Community of Practice) will be created. Capacity building is pursued at all levels. SMEs are involved to create expertise leading to new job opportunities, ensuring long-term continuation of services. In summary, ECOPOTENTIAL uses the most advanced technologies to improve future ecosystem benefits for humankind.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: WATER-4a-2014 | Award Amount: 1.58M | Year: 2015

FREEWAT aims at promoting water management and planning by simplifying the application of the Water Framework Directive and other EU water related Directives. FREEWAT will be an open source and public domain GIS integrated modelling environment for the simulation of water quantity and quality in surface water and groundwater with an integrated water management and planning module. Specific objectives of the FREEWAT project are: - to coordinate previous EU and national funded research to integrate existing software modules for water management in a single environment into the GIS based FREEWAT; - to support the FREEWAT application in an innovative participatory approach gathering technical staff and relevant stakeholders (in primis policy and decision makers) in designing scenarios for the proper application of water policies. FREEWAT will initiate a process aimed at filling the gap between EU and US on widespread-standardised ICT tools and models for management of water quantity and quality and will set a well recognisable and flagship initiative. The open source characteristics of the platform allow to consider this an initiative ad includendum (looking for inclusion of other entities), as further research institutions, private developers etc. may contribute to the platform development. Through creating a common environment among water research/professionals, policy makers and implementers, FREEWAT main impact will be on enhancing science- and participatory approach and evidence-based decision making in water resource management, hence producing relevant and appropriate outcomes for policy implementation. The Consortium is constituted by partners from various water sectors from 11 EU countries, plus Switzerland, Turkey and Ukraine. Synergies with the UNESCO HOPE initiative on free and open source software in water management greatly boost the value of the project. Large stakeholders involvement guarantees results dissemination and exploitation.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: DRS-01-2015 | Award Amount: 6.66M | Year: 2016

Society as a whole is increasingly exposed and vulnerable to natural disasters because extreme weather events, exacerbated by climate change, are becoming more frequent and longer. To increase the resilience of European citizens and assets to natural disaster we propose I-REACT: Improving Resilience to Emergencies through Advanced Cyber Technologies. The proposed system targets public administration authorities, private companies, as well as citizens in order to provide increased resilience to natural disasters though better analysis and anticipation, effective and fast emergency response, increased awareness and citizen engagement. I-REACT integrates existing services, both local and European, into a platform that supports the entire emergency management cycle. Leveraging on innovative cyber technologies and ICT systems, I-REACT will be able to enable early planning of disaster risk reduction actions, achieve effective preparedness thanks to risk assessment and early warnings, and efficiently manage emergency responses by empowering first-responders with up-to-date situational information and by engaging citizens through crowdsourcing approaches and social media analysis. I-REACT will integrate multiple systems and European assets, including the Copernicus Emergency Management Service, the European Flood Awareness System (EFAS), the European Forest Fire Information System (EFFIS), and European Global Navigation Satellite Systems (E-GNSS), e.g. Galileo and EGNOS.I-REACT will be structured as a user-driven project, integrating the requirements from all main stakeholders as well as the guidelines that emerged during European workshops and seminars related to emergency management. I-REACT services will also enable new business development opportunities around natural disasters triggered by extreme weather conditions, which will reduce the number of affected people and loss of life, lowering the environmental and economic costs due to damaged assets within society.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BG-08-2014 | Award Amount: 20.65M | Year: 2015

The overarching objective of AtlantOS is to achieve a transition from a loosely-coordinated set of existing ocean observing activities to a sustainable, efficient, and fit-for-purpose Integrated Atlantic Ocean Observing System (IAOOS), by defining requirements and systems design, improving the readiness of observing networks and data systems, and engaging stakeholders around the Atlantic; and leaving a legacy and strengthened contribution to the Global Ocean Observing System (GOOS) and the Global Earth Observation System of Systems (GEOSS). AtlantOS will fill existing in-situ observing system gaps and will ensure that data are readily accessible and useable. AtlantOS will demonstrate the utility of integrating in-situ and Earth observing satellite based observations towards informing a wide range of sectors using the Copernicus Marine Monitoring Services and the European Marine Observation and Data Network and connect them with similar activities around the Atlantic. AtlantOS will support activities to share, integrate and standardize in-situ observations, reduce the cost by network optimization and deployment of new technologies, and increase the competitiveness of European industries, and particularly of the small and medium enterprises of the marine sector. AtlantOS will promote innovation, documentation and exploitation of innovative observing systems. All AtlantOS work packages will strengthen the trans-Atlantic collaboration, through close interaction with partner institutions from Canada, United States, and the South Atlantic region. AtlantOS will develop a results-oriented dialogue with key stakeholders communities to enable a meaningful exchange between the products and services that IAOOS can deliver and the demands and needs of the stakeholder communities. Finally, AtlantOS will establish a structured dialogue with funding bodies, including the European Commission, USA, Canada and other countries to ensure sustainability and adequate growth of IAOOS.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: EINFRA-5-2015 | Award Amount: 4.07M | Year: 2015

Materials are crucial to scientific and technological advances and industrial competitiveness, and to tackle key societal challenges - from energy and environment to health care, information and communications, manufacturing, safety and transportation. The current accuracy and predictive power of materials simulations allow a paradigm shift for computational design and discovery, in which massive computing efforts can be launched to identify novel materials with improved properties and performance; behaviour of ever-increasing complexity can be addressed; sharing of data and work-flows accelerates synergies and empowers the science of big-data; and services can be provided in the form of data, codes, expertise, turnkey solutions, and a liquid market of computational resources. Europe has the human resources, track record and infrastructure to be worldwide leader in this field, and we want to create a CoE in materials modelling, simulations, and design to endow our researchers and innovators with powerful new instruments to address the key scientific, industrial and societal challenges that require novel materials. This CoE will be a user-focused, thematic effort supporting the needs and the vision of all our core communities: domain scientists, software scientists and vendors, end-users in industry and in academic research, and high-performance computing centres. The proposal is structured along two core actions: (1) Community codes, their capabilities and reliability; provenance, preservation and sharing of data and work-flows; the ecosystem that integrates capabilities; and hardware support and transition to exascale architectures. (2) Integrating, training, and providing services to our core communities, while developing and implementing a model for sustainability, with the core benefit of propelling materials simulations in the practice of scientific research and industrial innovation.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SEAC-1-2014 | Award Amount: 2.00M | Year: 2015

The PERFORM consortium aims to investigate the effects of the use of innovative science education methods based on performing arts in fostering young peoples motivations and engagement with science, technology, engineering, and mathematics (STEM) in selected secondary schools in France, Spain and the United Kingdom. A considerable percentage of young people in Europe is not interested in STEM careers mainly because they perceive that they lack the skills to deal with such topics. Such negative perceptions discourage adolescents from investing time in learning about science and undervalue the role of science in society. Addressing the challenge of engaging young people in STEM has never been more urgent in Europe in order to avoid loss of scientific talent and to ensure future innovation capability, excellence and competitiveness. PERFORM takes action to overcome the remaining distance between young people and science and to break the unidirectional model of scientific knowledge transfer. PERFORM will explore a creative, participatory educational process on STEM through the use of scenic arts with secondary school students, their teachers and early career researchers, who will get actively involved in experiencing science. They will also reflect on their own role in the interaction between science and society, and the values embedded in Responsible Research and Innovation. PERFORM will analyse how such human-centred, science-arts educational approach contributes to foster girls and boys motivations towards science learning and strengthen the transversal competences they will need for STEM careers and jobs. The education and communication skills required for teachers and researchers to further replicate the educational process will be explored and addressed in specific training toolkits. The project dissemination will be fulfilled by ensuring strong science-policy links and by linking PERFORM with Scientix.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: LCE-03-2014 | Award Amount: 5.80M | Year: 2015

To reduce the total cost of low enthalpy geothermal systems by 20-30 % the project will improve actual drilling/installation technologies and designs of Ground Source Heat Exchangers (GSHEs). This will be combined with an holistic approach for optimum selection, design and implementation of complete systems across different underground and climate conditions. The proposal will focus on one hand on the development of more efficient and safe shallow geothermal systems and the reduction of the installation costs. This will be realized by improving drastically an existing, innovative vertical borehole installation technology of coaxial steel GSHE and by developing a helix type GSHE with a new, innovative installation methodology. These GSHEs will be installed to a depth of 40 50 meters ensuring improved safety and faster permitting. On the other hand, the proposal will develop a decision support (DSS) and other design tools covering the geological aspects, feasibility and economic evaluations based on different plant set-up options, selection, design, installation, commissioning and operation of low enthalpy geothermal systems . These tools will be made publicly available on the web to users, including comprehensive training to lower the market entry threshold. Given that drilling and GSHE technologies are mature but costly, this holistic approach is included in the proposal to bring the overall cost of the total project down, i.e. not just the cost of the GSHE itself but the avoidance of ground response tests, the engineering costs for the design of the GSHE and the integration of heat pumps with building heating and cooling systems. Also the use of novel the heat pumps for higher temperatures developed within the project will reduce the costs in the market for retrofitting buildings. The developments will be demonstrated in six sites with different undergrounds in different climates whilst the tools will be applied to several virtual demo cases.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: BG-13-2014 | Award Amount: 3.49M | Year: 2015

The overarching goals of the Sea Change project are to bring about a fundamental Sea Change in the way European citizens view their relationship with the sea, by empowering them as Ocean Literate citizens - to take direct and sustainable action towards healthy seas and ocean, healthy communities and ultimately - a healthy planet. Key objectives of Sea Change are to: Compile an in-depth review of the links between Seas and Ocean and Human health based on latest research knowledge outputs Build upon the latest social research on citizen and stakeholder attitudes, perceptions and values to help design and implement successful mobilisation activities focused on education, community, governance actors and directly targeted at citizens. marine education Build upon significant work to date, adopting best practice and embedding Ocean Literacy across established strategic initiatives and networks in order to help maximise impact and ensure sustainability Ensure that efforts to sustain an Ocean Literate society in Europe continue beyond the life of Sea Change through codes of good practice, public campaigns and other ongoing community activities. Ensure that all activities of Sea Change are carefully monitored and evaluated to ensure maximum sustainability, effectiveness and efficiency Ensure Knowledge exchange with transatlantic partners to bring about a global approach to protecting the planets shared seas and ocean. The objectives will be achieved by a closely interlinked programme. Sea Change includes a mobilisation phase engaging with citizens, formal education and policy actors. Crucially the legacy of Sea Change, including continuing knowledge sharing with North America, are embedded within the project.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: GARRI-6-2014 | Award Amount: 2.65M | Year: 2015

The goal of the TRUST Project is to catalyse a global collaborative effort to improve adherence to high ethical standards around the world. Achieving equity in international research is one of the pressing concerns of the 21st century. Many international groups and organisations are working on governance frameworks and standards to guide research activities after progressive globalization. However, their efforts are disparate and lacking a guiding vision. In an interdisciplinary collaboration between multi-level ethics bodies, policy advisors, civil society organisations, funding organisations, industry and academic scholars from a range of disciplines, this project combines long-standing, highly respected efforts to build international governance structures with new exciting network opportunities between Europe, India, Sub-Saharan Africa, China and Russia. TRUST will open up new horizons in improving adherence to high ethical standards in research globally. The projects strategic output are three sets of tools based on participatory engagement covering all continents: (1) a global code of conduct for funders, (2) a fair research contracting on-line tool and (3) a compliance and ethics follow-up tool, which takes limited resources into account.

Loading United Nations Educational collaborators
Loading United Nations Educational collaborators