Entity

Time filter

Source Type


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: SPA.2009.2.2.01 | Award Amount: 3.37M | Year: 2010

This proposal is focused on the development of a new generation of wide band gap (WBG) GaN technology and devices for which strong impacts in term of performances, reliability and robustness are expected. AL-IN-WON will explore two main disrupting routes: - Next generation of WBG device based on new epi material (InAlN/GaN) for strong improvement in term of performances and reliability. - High efficiency / High Power generation in Ku / Ka bands It proposes to evaluate in 2 phases next generation of WBG material up to Ka Band. The InAlN/GaN heterostructure offers the following advantages: As InAlN/GaN is lattice matched, it offer the possibility to growth very thin layer in the range of 10nm or below WHICH IS THE MOST RELEVANT to overcome short channel effect AND GO TOWARDS HIGH frequency range up to millimeter wave range. In0.18 Al0.82N /GaN is a new heterostructure able to give twice the drain current available from a more conventional AlGaN/GaN heterostructure. Breakdown voltage is comparable for the two heterostructures. In0.18 Al0.82N is latticed matched to GaN and higher reliability is therefore expected compared to AlGaN/GaN. Passivation is currently a major limitation to device operation. InAlN/GaN MOSHEMT are very promising with strong current drain improvement compared to HEMT (UltraGaN). We plan to evaluate CW Ku and Ka Band MMIC High Power Amplifiers (HPA) and Low Noise Amplifiers (LNA). Demonstrators in Ka band will be designed based on devices coming from the run 2. The final objective being the evaluation of InAlN/GaN compared to more conventional AlGaN/GaN very high power HEMT technology with very high breakdown voltage, high current and compliant with high power density. Regarding space application for which reliability and robustness are of major concerns, we expect to demonstrate the major breakthrough offered by GaN technology, and especially InAlN if successful.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: SPA.2013.2.2-01 | Award Amount: 3.42M | Year: 2013

Next generation of Guidance Navigation Satellite Systems will require an increase in the available power of navigation signals at the receiver on ground. Current FOC Galileo satellites under development make use of TWTAs to provide an output power of nearly 200W (E1 band). Next generation of Galileo satellites will require higher output powers (2dB more) what implies a challenge in the design and implementation of the high power amplifier unit. Obtaining the required output power levels with certain efficiency and within preset linearity requirements is a key requirement for the optimisation of the payload, which can be satisfied with GaN technology. At L-band efficiency of GaN SSPA in spacecraft is similar to efficiency of TWTAs and it presents as advantage that GaN SSPA requires 2 times smaller area than TWTAs which leads to a 2.5 times lower weight. There are important efforts in Europe focused on demonstrating the capabilities of GaN technology applied to HPAs. Despite of the promising results, the tests are carried out on breadboards. Thus, for real space application its necessary to fill the gap between breadboard and final HPA FM, taking into account all the constrains given by space segment: environmental, mass, consumption, The aim of SLOGAN project is to evaluate and apply the potentiality of mature UMS European GaN based technology (GH-50) through the realization of a GaN SSPA EQM for the next generation of Galileo satellites. The objective is to make the development for E1 band as it is the most challenging in terms of output power. The development of SLOGAN project will allow not only to show the feasibility of implementing a high output power GaN SSPA for Galileo application, but also will open the door to a wide variety of applications (such as radio broadcasting, Tx/Rx modules for Earth Observation space & airborne radars, etc.) in which GaN technology with its increased power and mass efficiency promises a clear advantage over current solutions.


Grant
Agency: Cordis | Branch: H2020 | Program: ECSEL-RIA | Phase: ECSEL-01-2014 | Award Amount: 4.49M | Year: 2015

OSIRIS project, a Research and Innovation Action (RIA), aims at improving substantially the cost effectiveness and performance of gallium nitride (GaN) based millimetre wave components. The project proposes to elaborate innovative SiC material using isotopic sources. This material will offer thermal conductivity improvement of 30% which is important for devices dissipating a lot of power, in particular in SiC power electronics and in microwave device using GaN high electron mobility transistors (HEMT) grown on SiC semi-insulating substrates. OSIRIS project will allow reinforcing GaN technology penetration into the market by cost effectiveness of the SiC substrates and circuit performances improvement thanks to better heat spreading close to the dissipative area. For microwave GaN/SiC HEMT this isotopic approach could create a complete shift in the currently used substrate / GaN epi-wafer technology; it intends to grow high thermal conductivity (\30%) semi-insulating SiC on top of low cost semiconducting SiC substrates (widely used by the power electronics and LED industries). Reduced layer thickness is necessary as only the top 50 to 100m SiC wafer is really useful as the substrate itself is currently thinned to realise microstrip waveguided microwave circuits. For power electronics, this isotopic innovation will be essentially focused on thermal improvement, i.e. better electron mobility at a given power dissipation as mobility and drift mobility decrease with temperature and also better carrier transport thanks to lower scattering rates. Schottky and p-i-n diodes will be tested using this material, which however will have to be doped while microwave devices need semi-insulating materials. The improved thermal SiC properties will be obtained by using single isotopic atoms for silicon and carbon, namely 28Si and 12C. The SiC wafer size will be targeted to 100mm (4-inches) which is today widely used on industry.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: COMPET-06-2014 | Award Amount: 1.04M | Year: 2015

Plastic packaging solutions are foreseen as a good candidate to drastically reduce the cost of microwave equipment for future telecom satellite payloads. The objective of PAMPA project is to develop a plastic component technology, from the supply of the packaged microwave component with a reliability level compatible with space constraints up to its assembly on board using SMT (Surface Mount Technology) process. In order to demonstrate the potential of such technology, a flexible, digitally controlled microwave chain, representative of the need for new generation telecom satellite payloads, will be implemented on printed circuit board. Such technologies are particularly appealing for flexible microwave equipment, as the ASIC (Application Specific Integrated Circuit) and the microwave components can be assembled on board using the same SMT process. Furthermore, the use of a multilayer printed circuit board for the microwave chain is convenient for the implementation of dense DC routing of the command signals. To achieve the objective, the consortium gathers a manufacturer of satellite equipment, a Monolithic Microwave Integrated Circuit (MMIC) foundry, an industrial specialized in SMT manufacturing process and an academic partner with valuable knowledge in reliability of microelectronics packaging. It should be outlined that the MMIC foundry involved in the project is a dual foundry as it provides both plastic packaged components for the Automotive market in QFN (Quad-Flat No-leads) housings and bare MMIC with a Space grade quality. The main challenge will be to successfully spin-in a plastic technology coming from another harsh environment market that has drastic cost concerns, the Automotive, to the Space domain.

Discover hidden collaborations